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10 Nomenclature 

IR Infrared 

FTIR Fourier-transform infrared 

GC Gas chromatography 

GC×GC Two-dimensional GC 

15 CS Cross section 

DCN Derived cetane number by ASTM D6890 

IDT Ignition delay time 

LBO Lean blow-out 

FP Flash point by ASTM D93 

Total C Total number of carbon atoms per average molecule20 

Total H Total number of hydrogen atoms per average molecule 

MW Molecular weight 

IBP Initial boiling point by ASTM D86 

ρ Density at 15◦C by ASTM D4052 

25 ST Surface tension at 22◦C by ASTM D1331 

NHC Net heat of combustion by ASTM D4809 

KV Kinematic viscosity at -20◦C by ASTM D445 

Total cyclo Total cycloparaffin weight percentage 

CV Cross validation 

30 CVE Cross validation error 

NJFCP National jet fuel combustion program 
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1. Introduction 

In the past two decades, Alternative Jet Fuel (AJF) development has been 

a popular combustion research topic due to an increasing interest in reducing 

35 combustion emissions, mitigating climate change, and improving energy supply 

security [1]. In particular, the National Jet Fuel Combustion Program (NJFCP) 

was established by the Federal Aviation Administration (FAA) in 2014, support-

ing a collaborative effort involving over 30 institutions to understand the impact 

of jet fuel physical properties and chemical composition on combustion behav-

40 ior. A particular goal of this program is to eventually streamline the process 

of AJF certification, which is currently a major hurdle for market penetration 

[1, 2, 3]. According to market research [4], the global alternative fuel and hybrid 

vehicle market is expected to reach $614 billion (about 3% of the US GDP in 

2017) by 2022 and it is currently growing at compound average growth rate of 

45 12.9%. 

Within the kinetics working group of NJFCP, there has been remarkable 

progress [2, 3] in applications of advanced laser diagnostics techniques in shock 

tube experiments [5, 6, 7, 8, 9, 10, 11] to characterize fuel pyrolysis and com-

bustion behavior of a range of conventional, alternative, and synthetic jet fuels 

50 [12], enabling useful correlations between DCN and other jet fuel properties 

and contributing both to detailed chemical kinetic modeling and the hybrid 

chemistry (HyChem) approach [13, 14, 15, 16]. However, it is still difficult to 

physically model and calculate jet fuel properties. One of the main difficulties 

comes from jet fuels’ complicated compositions that usually consist of hundreds 

55 of components. To overcome this challenge, direct estimation of these properties 

of hydrocarbon fuels from relatively accessible and available infrared spectral 

data has been proposed and studied by various researchers. 

Zanier-Szydlowski et al. proposed in [17] methods using multivariate linear 

regression and liquid-phase near-IR spectra in the range 1562 to 2222.2 nm to 

60 predict the refractive index at 20◦C, the density at 15◦C, the weight percent-

age of hydrogen, the percentage of aromatic carbon and the weight percentage 
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of mono-, di- and total aromatics for hydrotreated gas oils. Balabin and Lo-

makina discussed in [18] the need for rapid, robust, and cheap quality control 

of industrial production in real time and online, which motivates the combina-

65 tion of informative liquid-phase near-IR spectra in the range of 909 to 2500 nm 

with advanced machine learning tools to predict properties of interest. They 

pointed out that such a need stands out especially in the multi-trillion dollar 

but environmentally-unfriendly petroleum industry and also in the fast-growing 

biofuel industry. They also discussed the potential nonlinearity in the spectrum-

70 property relations due to strong intermolecular and intramolecular interactions, 

and shift of vibrational bands. It is expected that even relatively weak van der 

Waals force can affect the accuracy of linear models. Torres et al. proposed to 

apply support vector machine (SVM) and partial least square (PLS) models on 

liquid-phase mid-FTIR spectra in the range 2500 nm to 16.7 µm to estimate 

75 density, refractive index, and cold filter plugging point of biodiesel samples and 

their blends [19]. They reported the advantage of SVM over PLS for predict-

ing non-linear properties. Alves et al. applied SVM to liquid-phase near-IR 

spectrum in the range 2096.9 to 2535.5 nm to predict flash point and cetane 

number and compared the results against those of PLS [20]. Da Silva et al. used 

80 liquid-phase spectra in both near- and mid-IR (833.3 nm to 15.4 µm) and ma-

chine learning models to classify if a gasoline contains dispersant and detergent 

additives [21]. More related work can be found in [22, 23, 24, 25, 26]. 

Similarly, estimation methods for jet and diesel fuel properties using nuclear 

magnetic resonance (NMR) spectra as inputs were also proposed in studies such 

85 as [27, 28]. In a similar way, the authors of [29, 30] proposed estimation methods 

based on SVM and PLS using gas chromatography and mass spectrum data. In 

addition, various estimation methods based on quantitative structure property 

relationship (QSPR) were proposed in [31, 32, 33, 34]. A more comprehensive 

review can be found in [35] by Dryer. To use QSPR to estimate properties, a 

90 wide number of one-dimensional (1D), two-dimensional (2D), and 3D molecular 

descriptors are first calculated. Then these quantitative descriptors, or features, 

are fed into both linear and nonlinear machine learning models such as multi-
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variate linear regression, PLS, artificial neutral network, SVM, etc. Procedures 

such as recursive feature elimination are employed to down-select the features. 

95 In term of general procedure of building machine learning models, the step 

of calculating quantitative descriptors is essentially feature engineering, which 

refers to using domain-specific knowledge to create effective features that corre-

late with properties of interest. Feature engineering is a powerful tool that has 

proven critical to many machine learning problems, but it also introduces sev-

100 eral potential issues. Firstly, it highly depends on the domain knowledge of the 

modeler. Secondly, it is often difficult to evaluate the relevance and importance 

of features due to the overlap in information provided by them. Thirdly, feature 

selection is often at the discretion of modeler and lacks a unified approach. 

In this study, a data-driven approach inspired by data science and statistics 

105 is taken to directly develop correlations between fuel properties without compo-

sitional and kinetic modeling of jet fuels. The main goal is to develop practical 

and meaningful estimation methods for properties of hydrocarbon fuels using 

mid-IR spectra of fuel vapor. More specifically, in section 3, correlations between 

FTIR spectra from 3350 to 3450 nm and 15 physical and chemical properties are 

110 studied. Regularized linear models are proposed for each of these properties in 

section 4. This method has four practical advantages compared to the methods 

reviewed above. Firstly, feature engineering is not needed. A measured mid-IR 

FTIR spectrum is used as input without the need of preprocessing. The absorp-

tion at each wavelength is effectively one feature. Secondly, feature selection is 

115 performed systematically through model regularization. Manual selection is not 

needed. Thirdly, as demonstrated in section 4, instead of using more compli-

cated non-linear models, linear models using mid-IR spectra data can achieve 

high estimation accuracy. Fourthly, this method provides estimation of multi-

ple physical and chemical properties with one FTIR spectrum for various types 

120 of vaporized hydrocarbon fuels including pure hydrocarbons and their blends, 

distillate and synthetic jet fuels and their blends. These advantages will be 

discussed in greater detail in the following text. 

Both spectral and property data presented in this paper come from var-
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ious sources. Out of the 64 vapor-phase FTIR spectra of hydrocarbon fuels 

125 examined in the study, 22 (distillate and synthetic jet fuels) were measured 

at Stanford University using a Nicolet 6700 FTIR spectrometer; 18 (pure hy-

drocarbons, including n-, iso-, cyclo- paraffins and toluene) are taken from the 

Pacific Northwest National Laboratory (PNNL) gas-phase database for quan-

titative infrared spectroscopy [36]; and the spectra of 24 blends of jet fuels or 

130 single hydrocarbons are calculated from the aforementioned 22 plus 18 FTIR 

spectra. IDT and C2H4 yield were measured in Stanford’s Flexible Applications 

Shock Tube (FAST) facility [37]. Derived cetane number (DCN), net heat of 

combustion (NHC), two-dimensional GC (GC×GC) and all physical properties 

of all jet fuels were measured by the Air Force Research Laboratory (AFRL) 

135 and provided through the NJFCP. LBO data were taken from literature [38, 39]. 

All properties of pure hydrocarbons and their blends were taken from various 

literature and online sources, including [40, 41, 42, 43]. 

2. Fourier-transform infrared spectroscopy 

Figure 1: Example optical setup of FTIR spectrometer [44, p. 41-47] 

Fourier-transform infrared spectroscopy is a widely used, mature technology 

(a detailed introduction can be found in [44]). Here we provide a brief review. A 

FTIR spectrometer typically employs a broadband IR light source, a Michelson 
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interferometer, and an IR detector to measure absorbance of a test medium (in 

our case fuel vapor) that can be used to calculate absorption coefficients and 

cross sections. A schematic for a typical optical setup of an FTIR is shown in 

145 Figure 1. As the moving mirror travels (measured by displacement d), differ-

ent wavelengths from the light source are modulated due to inference. During 

this process, the spectrometer records the light signal in voltage vs the mirror 

displacement d, producing an interferogram. By performing a Fourier transfor-

mation on the interferogram, the absorption spectrum of the test gas can be 

150 inferred. For the PNNL database, the spectral resolution is about 0.1 cm−1 and 

the 1σ statistical uncertainty in absorbance value is < 2% [36]; jet fuels spectra 

were measured at Stanford with spectral resolution about 0.06 cm−1 and un-

certainty around 2%. The details on experimental procedure for measurements 

of vapor-phase spectra at Stanford are provided in [45]. 

155 2.1. Advantages of using vapor-phase mid-IR spectrum 

Our vapor-phase mid-IR FTIR measurements utilize fuel vapor at 50 or 

80◦C (rather than liquid as in [17, 18, 20, 21, 22, 23, 24, 25, 26]) to characterize 

the hydrocarbon fuels’ spectral features. These spectra are not sensitive to 

temperature from 50 to 80 ◦C. This method has several advantages. Firstly, the 

160 spectrum-property relations for fuel vapor are less susceptible to non-linearity 

than liquid as described in [18], and the calculation of mid-IR spectra for fuel 

mixtures is straightforward provided that the mole fraction and spectrum of 

each individual component is available as discussed in [46]. Beer-Lambert’s 

Law for ideal gas and ideal gas mixtures shown in Equation 1 and Equation 2 

165 can be utilized to calculate the absorption cross section σλ at each wavelength 

λ. 

It PL 
α(λ) = − ln = σλ (1)

I0 RT 

XIt PL Pxi
α(λ) = − ln = σλ = σλ,i L (2)

I0 RT RT 
i 
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where the summation is over all components i in a mixture; α(λ) is absorbance; 

It and I0 are the laser intensities before and after passage through the absorb-

ing gas; σλ,i is the absorption cross section for component i at wavelength λ; 

170 P is pressure; xi is the mole fraction of component i; R is the universal gas 

constant; T is temperature. Equation 2 enables a simple calculation of a fuel 

mixture’s spectrum provided that the mole fractions xi and the spectrum of all 

components σλ,i are known. This is of practical importance for the develop-

ment of alternative jet fuels since they are often mixtures of other hydrocarbon 

175 fuels. Secondly, the strong absorption features in the mid-IR region enables 

high signal-to-noise ratio spectra with small amounts of hydrocarbon fuel. This 

is again of practical importance for alternative fuel development as their sup-

ply is typically limited and may be available only in cubic-centimeter volumes. 

Thirdly, FTIR measurements are relatively simple and economical compared 

180 with NMR and GC×GC methods. Lastly, mid-IR spectra in the range 3300 

to 3550 nm provide rich quantitative information on the molecular structure 

of hydrocarbon fuels. As shown in section 4, a full mid-IR spectrum in this 

range, subjected to statistical analysis, allows simultaneous and high-fidelity 

estimations of multiple physical and chemical properties. 

185 3. Demonstration of correlation between FTIR spectra and physical 

and chemical properties 

Table 1: Four absorption features of hydrocarbons 

λ [µm] Dominant Motion [47, 48, 49] 

3.32 stretch of benzene H 

3.37 asymmetric stretch of – CH3 

3.41 asymmetric stretch of – CH2 – 

3.49 symmetric stretch of – CH3, – CH2 – 

As mentioned in previous sections, mid-IR spectra in the wavelength range 

3350 to 3450 nm are utilized in this study. As shown in Figure 2 and Table 1 
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Figure 2: Jet fuel FTIR spectra at 80◦C 

(or Figure 1 and Table 1 of [46]), there are four main absorption features in 

190 this range due to the vibration of C–H bonds from different functional groups: 

benzene ring, –CH3, –CH2 – , etc. Since the physical and chemical proper-

ties depend strongly on the functional groups in hydrocarbons, the spectrum-

functional group relations provide the physical foundation for using mid-IR spec-

tra to estimate fuel properties. In the rest of this section, the strong correlations 

195 between mid-IR spectra and fuels’ properties are demonstrated. 

3.1. Normalization to the FTIR spectrum 

Both the absolute and normalized (by the integrated area) FTIR spectra in 

the wavelength range 3350 to 3450 nm are utilized. The shape of the normalized 

spectrum reflects the proportions of chemical component classes and functional 

200 groups; the absolute absorption cross section in the unnormalized spectrum re-

flects average molecule size. It is of note that the shapes of unnormalized and 

normalized spectra are the same for each fuel. In this paper, we attempt the 

correlations with both unnormalized and normalized spectra and select the one 

with the best correlation. In general, properties (such as C2H4 yield as defined 

205 in the caption of Figure 15, total cycloparaffin weight percentage, and density) 
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210 

215 

that strongly depend on molecular structure correlate best with the normal-

ized spectrum; properties (such as total number of carbon/hydrogen atoms per 

average molecule, molecular weight) that strongly depend on molecule size cor-

relate best with the unnormalized spectrum. Table 2 summarizes all physical 

and chemical properties studied in this study and whether the spectrum used is 

normalized or not. 

3.2. Correlations between physical and chemical properties and absorption cross 

section at a single wavelength 

Algorithm 1: Calculate sample Pearson correlation coefficient 

ρ(σλ, P ) of training dataset F for each property P , and for each wave-

length λ. An example of ρ(σλ, P ), where P is total hydrogen per aver-

age molecule, is shown in the bottom figure of Figure 3b. 

Result: ρ(σλ, P ) 

for each property P do 

for each λ in 3350 to 3450 nm do 
1. generate a vector of cross sections σλ at wavelength λ by 

interpolating the measured FTIR spectrum 

2. calculate sample Pearson correlation coefficient between σλ 

and P , as defined in Equation 3 

end 

end 

Here we use the sample Pearson correlation coefficient ρ(σλ, P ) defined in 

Equation 3 as a measure of sensitivity and linearity of the quantitative relation 

between a physical/chemical property P and absorption cross section σλ at a 

wavelength λ. 

P � �
¯(σλ,f − σ̄ λ) Pf − P 

ρ(σλ, P ) = f ∈F 
(3)qP P � �22 ¯(σλ,f − σ̄ λ) Pf − Pf ∈F f∈F 

where f denotes a fuel in dataset F ; σλ,f is the absorption cross section of fuel 

f at wavelength λ; σ̄ λ is the average of absorption cross sections at wavelength 

10 



¯ 
220 λ over all fuels in F ; Pf is the property P of fuel f ; P is the average of property 

P over all fuels in F . For a dataset F of fuels listed in Table 18, ρ(σλ, P ) 

measures the linearity between σλ and P and the quality of linear regression 

between them; ρ is always within ±1 and ρ = ±1 indicates a perfect linear 

relation; ρ = 0 implies zero correlation between σλ and P for dataset F . In 

225 this section, dataset F includes only fuels that are not pure aromatics or pure 

cycloparaffins from Table 18. 

The most sensitive wavelength λ∗ is selected such that the absorption cross 

section σλ has the highest sample Pearson correlation coefficient with the target 

property P , i.e. 

λ ∗ = arg max ρ(σλ, P ). (4) 

230 The procedure of selecting the most sensitive wavelength λ∗ is outlined in Al-

gorithm 1. For each property P of interest, the algorithm iterates though all 

1600 wavelengths in the range of 3350 to 3450 nm (width of wavelength slice 

equals 100/1600 = 0.0625 nm) and examines the sample Pearson correlation 

coefficient between the absorption cross section σλ and property P . Then it 

235 picks the most sensitive wavelength λ∗ defined by Equation 4. It is of note that 

we only reported the most sensitive wavelength in region 3350 - 3450 nm due to 

a consideration of signal to noise ratio, i.e. the absorption is much stronger in 

the range of 3350 - 3450 nm. In addition, the absorption cross sections in 3450 

- 3550 nm strongly correlate with those in 3350 - 3450 nm, since they are both 

240 due to molecular motions of – CH2 – and –CH3. Hence, when seeking for the 

most sensitive single wavelength, there is not much to gain by including 3450 -

3550 nm. 

The correlations between mid-IR FTIR spectra and 15 physical and chem-

ical properties listed in Table 2 are analyzed. Detailed descriptions of each 

245 column of Table 2 are included in its caption. All property values are listed in 

Table 19. Here we present two examples: total number of hydrogen per average 

molecule (Figure 3) and DCN (Figure 4). Figure 3 shows that the total number 
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Figure 3: Total number of hydrogen per average molecule estimation using absorption cross 

section at λ∗ = 3430.8 nm. (a) Total number of hydrogen per average molecule vs absorption 

cross section at 3430.8 nm. (b) Top: example absorption spectrum of a nominal jet fuel A2 

(see Table 18); bottom: Pearson correlation coefficient ρ(σλ, P ) for λ ∈ [3300, 3550] nm, where 

P stands for total number of hydrogen per average molecule, for all 64 fuels in Table 18. 
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Figure 4: DCN estimation using absorption cross section at 3408.8 nm. (a) DCN vs absorption 

cross section at λ∗ = 3408.8 nm. (b) Top: example absorption spectrum of a nominal jet fuel 

A2 (see Table 18); bottom: Pearson correlation coefficient ρ(σλ, P ) for λ ∈ [3300, 3550] nm, 

where P stands for DCN, for 61 fuels in Table 18 for which DCN is available. 

of hydrogen per average molecule can be well estimated using the unnormalized 

absorption cross section σ3430.8nm for various types of hydrocarbon fuels with 

Pearson correlation coefficient ρ = 0.95. Figure 4 shows the correlation between 

derived cetane number (DCN) and the absorption cross section σ3408.8nm with 

ρ = 0.92. As a summary of the most sensitive wavelength to each property, Fig-
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Figure 5: Top: most sensitive wavelength from 3350 to 3450 nm (shaded area) for 15 physical 

and chemical properties over the set of 64 fuels. Plotted here is the FTIR spectrum for A2 fuel 

(see Table 18). All correlations have sample Pearson correlation coefficient ρ ∈ [0.74, 0.95]; 

bottom: the sample Pearson correlation coefficient at λ∗ for each of the 15 properties. 

ure 5 visualizes their spectral location on the unnormalized FTIR spectrum of a 

nominal distillate jet fuel A2 (POSF10325, with detailed description in Table 18 

255 and [12]). In Figure 5, the sample Pearson correlation coefficients range from 

0.74 to 0.95 at the most sensitive wavelength for each property. Not surprisingly, 

important combustion properties, such as LBO, DCN, IDT, strongly correlate 

with the absorption peak corresponding to the – CH2 – functional group (around 

3410 nm) [46]; physical properties that depend strongly on molecule size, such 

260 as total carbon/hydrogen per average molecule, molecular weight, initial boil-

ing point, correlate well with wavelengths in between absorption features of the 

– CH2 – and –CH3 functional groups. The clustering around 3425 nm could be 

due to a clustering around density and boiling point. As pointed out in [50], 

many properties such as surface tension and molecular weight can be estimated 

265 with density and average boiling point. These strong correlations demonstrate 
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the potential of using mid-IR FTIR spectra of fuel vapor to estimate physical 

and chemical properties of hydrocarbon fuels. 

Table 2: Column “F.” shows the figure number for each regularized linear model; column “P.” 

is the name of physical/chemical properties; column “N.” indicates if the normalized spectrum 

is used or not (“F” stands for false and “T” for true); m is the total number of data points in 

the training dataset with corresponding property data; column “CVE” shows the 10-fold cross 

validation error; column “%” is defined as CVE divided by the average of positive property 

values then multiplied by 100; Nλ is the number of wavelengths used in the regularized linear 

model. 

F. P. N. m CVE % Nλ 

7 Total C F 64 0.315 3.2 10 

8 Total H F 64 0.428 2.1 10 

9 MW F 64 4.22 3.1 10 

10 H/C ratio F 64 0.0389 1.9 19 

11 IBP F 33 11.3 7.5 11 

12 ρ T 27 0.0172 2.3 16 

13 ST F 16 0.669 2.8 6 

14 NHC T 21 0.105 0.24 7 

15 C2H4 yield T 23 0.121 8.8 7 

16 FP F 19 6.64 14 6 

17 LBO F 11 6.49E-4 0.79 6 

18 DCN F 61 3.66 7.9 10 

19 IDT F 20 108 8.7 3 

20 KV F 15 0.697 14 7 

21 Total cyclo T 65 4.77 14 10 

4. Regularized linear model for improved prediction accuracy 

The predictive power of mid-IR FTIR spectra towards physical and chem-

ical properties of hydrocarbon fuels is demonstrated in section 3. To obtain 

an accurate and practical estimation method for these properties, we choose to 
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use multiple wavelengths selected (by algorithm) from the full spectrum in 3300 

to 3550 nm instead of using single wavelengths as in section 3. In the follow-

ing sections, we present cross-validated linear models with Lasso regularization 

275 trained for each of the properties. In this section, all 64 fuels listed in Table 18 

are included in the training dataset. All property values are listed in Table 19. 

The procedure of model development is outlined in Algorithm 2. For each prop-

erty of interest, the algorithm generates an optimal model (and an optimal βµ 

as defined in Equation 5) for each µ (as defined in Equation 5) in a sequence of 

280 µ’s that eventually results in a different number of selected wavelengths. Then 

the algorithm compares these optimal models by their 10-fold cross validation 

error [51] (denoted eµ) and picks the one with the lowest error. 

Algorithm 2: Calculate coefficients β∗ for each property with the best 

10-fold cross validation error 
Result: β∗(P ) for each property P 

Generate a sequence Sµ of µ’s, such that log10 µ ∈ [−10, 10] 

for each property P do 

for each µ in Sµ do 
1) generate vector Y and matrix X as defined for Equation 5 

2) solve minimization problem as defined in Equation 5 and 

obtain βµ 

3) perform 10-fold cross validation for µ, obtain cross validation 

error eµ 

end 

1. plot eµ against µ and obtain Figure 6 

∗2. find µ = arg min eµ (left dashed line in Figure 6) 

3. save β∗(P ) = βµ ∗ 

end 

15 



4.1. Lasso regularization and cross validation 

In this section, we denote the discretized FTIR spectrum as matrix X ∈ 

Rm×n 
285 and the properties as vector Y ∈ Rm , where m is the number of fuels in 

the training dataset with corresponding property data and n is the number of 

wavelengths plus one (intercept). The FTIR spectrum is discretized by keeping 

24 evenly separated wavelengths (and hence n = 24+1 = 25). The discretization 

helps to reduce noise in the spectrum while retaining key spectral features. It 

290 is of note that n could be larger than m for some properties in Table 2 (note 

that the number of fuels is also denoted as m in Table 2). 

In an ordinary least square (OLS) regression setup, the following optimiza-

tion problem is solved to obtain the optimal coefficients β: 

β = arg min ||Y − Xβ||2, 
β∈Rn 

where ||Y − Xβ||2 denotes the L2-norm of vector Y − Xβ. However, OLS re-

295 gression is not suitable for problems with n > m. In addition, down-selection of 

wavelengths is preferred as information about molecular structure is not evenly 

distributed across all wavelengths in 3300 to 3550 nm. Hence we choose to solve 

the following optimization with Lasso regularization ([52, p. 68-69]) as defined 

in Equation 5: 

βµ = arg min ||Y − Xβ||1 + µ||β||1, (5) 
β∈Rn 

300 where µ > 0 is a hyper-parameter chosen by 10-fold cross validation ([52, p. Pn
241-247]); ||β||1 is the L1-norm of β defined as |βi|; similarly ||Y − Xβ||1i=1 

is the L1-norm of vector Y − Xβ. The term µ||β||1 in the objective function 

in Equation 5 penalizes the magnitude of β and serves to limit the degree of 

freedom of the linear model and reduce overfitting. It also has the benefit of 

305 promoting sparsity in βµ and hence selecting the most informative wavelengths. 

As mentioned above, 10-fold cross validation is performed by first partition-

ing fuels into ten partitions, denoted as d1, d2, · · · , d10, and then for each par-

tition of data di, a model is trained using the other nine partitions of data 

16 



d1, · · · , di−1, di+1, · · · , d10 and the trained model is evaluated on di to obtain 

310 the cross validation error. The best hyper-parameter µ is chosen to be the one 

corresponding to the smallest cross validation error. The choice of optimal µ 

reflects the tradeoff between using more wavelengths for improved estimation 

accuracy and less wavelengths to control overfitting for better generality. This 

tradeoff is demonstrated in Figure 6. The cross validation error is high when too 

315 many or too few wavelengths are utilized, which corresponds to overfitting to 

noise in data and underfitting to signal in data. Cross validation error is chosen 

as the metric to compare linear models with different numbers of wavelength 

because it estimates future estimation error on unseen data. 
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Figure 6: Cross validation error vs µ for estimating molecular weight. Top axis shows the 

number of wavelengths used corresponding to each µ on the bottom axis. Larger µ corresponds 

to fewer wavelengths in the linear model. The selected µ corresponds to the left dashed line, 

where the cross validation error is minimized. The region to the left of the left dashed line is 

where the model is too large and it is overfitting to the data noise; the region to the right of 

the right dashed line is where the model is too small and it does not capture all the signal. 

It is worth mentioning the equivalence between Equation 5 and Equation 6 

(details provided in [52, p. 68]), where t(µ) > 0 is a decreasing function in 

µ > 0. The regularization term µ||β||1 effectively limits the possible values of β. 

Since the objective function of Equation 5 is convex in β, effective optimization 
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algorithms are available. 

β ∗ = arg min ||Y − Xβ||1 subject to ||β||1 ≤ t(µ) (6) 
β∈Rn 

The results are presented below in Figure 7-21 and Table 3-17. Each property 

325 corresponds to a figure and table pair. For instance, the regularized linear model 

for estimating the total number of carbon atoms in an average molecule is shown 

in Figure 7 and Table 3. In Figure 7, Figure 7a demonstrates the performance 

of the model on the training dataset. The cross validation error (denoted CVE, 

both in absolute value and in percentage) and the number of fuels with this 

330 property value (total carbon per average molecule) in the training dataset are 

shown in the title of the figure. A larger CVE indicates potentially larger future 

estimation error. CVE should be viewed as a lower bound of future prediction 

error, i.e. the estimation error of total carbon atoms per average molecule is 

estimated to be at least 3.2%. Figure 7b shows example spectra of three jet 

335 fuels (C5, C1, A2, with detailed description available in Table 3 of [46]) and 

the selected wavelengths and contribution of each wavelength to the variation 

of total number of carbon. The contribution is calculated as the coefficient of 

cross section at wavelength λ multiplied by the sample standard deviation of 

cross sections of all fuels at this wavelength. Table 3 summarizes the selected 

340 wavelengths and the coefficients β of the regularized linear model for estimating 

the total number of carbon per average molecule. 

The performance and parameter statistics, including cross validation error 

(in absolute value and in percentage) and number of wavelengths, of the 15 

models for the 15 properties are summarized in Table 2. As shown in Table 2, 

345 each model utilizes at most 15 wavelengths. It is worth emphasizing that the 

regularized linear models presented in this study apply to fuel types in the train-

ing dataset, i.e. pure hydrocarbons and their mixtures, distillate and synthetic 

jet fuels. Caution is advised in extending the use of these models to other fuel 

types such as oxygenated fuels. 
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Figure 7: Total carbon per average molecule. (a) Calculated C using unnormalized spectrum. 

(b) Example spectra and selected λs and variation calculated at each λ. 
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Figure 8: Total hydrogen per average molecule. (a) Calculated H using unnormalized spec-

trum. (b) Example spectra and selected λs and variation calculated at each λ. 

350 4.2. Linear additivity 

The optimal model takes the following mathematical form 

N ∗X 
property = β0 

∗ + βi 
∗ σλ∗ , (7)

i 

i=1 

where optimal parameters N∗, β0 
∗, βi 

∗, λ∗ are all fitted by the training algorithm. i 

One observation following the linearity of physical and chemical property 

in σλi (Equation 7) is that to calculate a property for a fuel mixture one can 

355 simply take the average of the property of each component weighted by its mole 

fraction. This implies that linear interpolation is a reasonable approximation for 
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Figure 9: Molecular weight [g/mol]. (a) Calculated MW using unnormalized spectrum. (b) 

Example spectra and selected λs and variation calculated at each λ. 
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Figure 10: Hydrogen to carbon ratio. (a) Calculated H/C ratio using unnormalized spectrum. 

(b) Example spectra and selected λs and variation calculated at each λ. 

this property and this training dataset regardless of whether it is truly linear in 

mole fractions. The percentage cross validation error (column “%”) in Table 2 

is a measure of the approximation quality. For instance, denote two fuels with 

360 average molecular formula Cm1 Hn1 , Cm2 Hn2 with hydrogen to carbon ratio 
n1 n2(H/C ratio) r1 = , r2 = and consider their mixture with mole fractions m1 m2 

x1, x2 = 1 − x1. Then the H/C ratio of the mixture, as derived in the equations 

below, is clearly not linear in mole fractions x1, x2, but interpolation x1r1 +x2r2 

can be used as a reasonable approximation considering that the percentage cross 

365 validation error is 1.9% (Table 2). The quality of approximation can also be 

seen from Figure 10a. 
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Figure 11: Initial boiling point [◦C] by ASTM D86. Data are taken from [43]. (a) Calcu-

lated IBP using unnormalized spectrum. (b) Example spectra and selected λs and variation 

calculated at each λ. 
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Figure 12: Density [g/cm3] at 15◦ C by ASTM D4052, or at 20◦C. Data are taken from [43]. 

(a) Calculated density using normalized spectrum. (b) Example spectra and selected λs and 

variation calculated at each λ. 

x1m1r1 + x2m2r2 
rm = (8) 

x1m1 + x2m2 

x1 x2 
= r1 + r2 (9)m2 m1x1 + x2 x1 + x2m1 m2 

x1 x2 
= r1 + r2 (10)

1 + x2( 
m2 − 1) 1 + x1( 

m1 − 1)m1 m2 

Importantly, the regularized linear models proposed above can still estimate 

physical and chemical properties of hydrocarbon fuels based on its measured 

FTIR spectrum even if the property data for each component is not available. 
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Figure 13: Surface tension [dynes/cm] by ASTM D1331. (a) Calculated surface tension using 

unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each 

λ. 

A1

41

42

43

44

41 42 43 44
NHC [MJ per kg]

C
al

cu
la

te
d Category

a

a

a

a

a

A fuel
Blend fuel
C fuel
Pure aromatics
Pure n− iso−

CVE=0.105 or 0.24%, 21 pts

0

50

100

3300 3350 3400 3450 3500
wavelength [nm]

C
S

 [m
2/

m
ol

] Fuel

C5
C1
A2

−0.4

−0.2

0.0

0.2

3300 3350 3400 3450 3500
wavelength [nm]

co
ef

fic
ie

nt
 *

 s
d

(a) (b) 

Figure 14: Net heat of combustion [MJ/kg] by ASTM D4809. (a) Calculated NHC using 

normalized spectrum. (b) Example spectra and selected λs and variation calculated at each 

λ. 

370 This is one of the advantages of using vapor phase spectra as described in more 

detail in subsection 2.1. 

4.3. R language and RStudio 

Training and cross validation of the regularized linear models are performed 

with the R language [53] using RStudio, specifically the glmnet package [54, 55] 

375 and cv.glmnet function, which were developed by researchers in the statistics 

department at Stanford University. 
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Figure 15: C2H4 yield at 1300 K, 4 atm and 2 ms. It is defined as the mole fraction of C2H4 

produced at 2 ms in a jet fuel pyrolysis experiment at 1300 K and 4 atm divided by the initial 

jet fuel mole fraction. Data are taken from [46]. (a) Calculated C2H4 yield using normalized 

spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
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Figure 16: Flash point [◦C] by ASTM D93. Data are taken from [43]. (a) Calculated FP 

using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated 

at each λ. 

5. Conclusion 

FTIR spectroscopy is used to provide the complete spectrum for unreacted 

hydrocarbon fuel vapor in the range 3300 to 3550 nm. Absorption cross sec-

tions in this wavelength region contain quantitative information about molecular 

structure. Different properties are most sensitive to different wavelengths, which 

in turn confirms the benefit of using the full spectrum. Spectral data can be 

combined with more sophisticated statistical models, such as the regularized 
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Figure 17: LBO. (a) Calculated LBO using unnormalized spectrum. (b) Example spectra and 

selected λs and variation calculated at each λ. 
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Figure 18: DCN by ASTM D6890. Data are taken from [40, 41, 42]. (a) Calculated DCN 

using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated 

at each λ. 

linear model as demonstrated, to provide accurate estimations. 
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Figure 19: IDT at 1300 K, 4 atm, with equivalence ratio 1. Data are taken from [46]. (a) 

Calculated IDT using unnormalized spectrum. (b) Example spectra and selected λs and 

variation calculated at each λ. 
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Figure 20: Kinematic viscosity [mm/s] at -20◦C by ASTM D445. (a) Calculated kinematic 

viscosity using unnormalized spectrum. (b) Example spectra and selected λs and variation 

calculated at each λ. 
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Figure 21: Total cycloparaffin weight percentage. (a) Calculated total cycloparaffin weight 

percentage using normalized spectrum. (b) Example spectra and selected λs and variation 

calculated at each λ. 
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Table 3: Wavelengths [nm] and coefficients for average number of carbon atoms. Intercept 

β∗ = −1.64. 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 

λ∗ 3300.4 3308.3 3324.2 3332.2 3348.4 3356.5 3364.7 3381.1 3431.5 3465.9 3492.1 

β∗ 9.6E-01 -3.2E-01 -5.3E-02 -5.9E-01 1.2E-01 -6.3E-02 -3.5E-02 5.5E-02 5.9E-02 3.2E-01 4.8E-02 

Table 4: Wavelengths [nm] and coefficients for average number of hydrogen atoms. Intercept 

β∗ = −2.91.0 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 

λ∗ 3300.4 3308.3 3324.2 3332.2 3348.4 3381.1 3414.5 3431.5 3465.9 3474.6 3492.1 

β∗ 1.3E+00 -5.3E-01 -5.5E-01 -3.3E-01 7.3E-02 8.4E-02 1.1E-02 1.3E-01 3.7E-01 1.7E-02 1.1E-01 

Table 5: Wavelengths [nm] and coefficients for MW [g/mol]. Intercept β∗ = −22.7.0 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 

λ∗ 3300.4 3308.3 3324.2 3332.2 3348.4 3356.5 3364.7 3381.1 3431.5 3465.9 3492.1 

β∗ 1.3E+01 -4.4E+00 -1.3E+00 -7.4E+00 1.5E+00 -7.6E-01 -4.2E-01 7.4E-01 8.5E-01 4.2E+00 6.9E-01 

Table 6: Wavelengths [nm] and coefficients for ratio H/C. Intercept β∗ = 2.14.0 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 

λ∗ 3300.4 3308.3 3316.2 3324.2 3332.2 3340.3 3348.4 3356.5 3364.7 3372.9 3381.1 3389.4 3397.7 3431.5 3440.0 3448.6 3465.9 3474.6 3483.3 3492.1 

β∗ -1.1E-01 3.6E-02 5.4E-02 -7.1E-02 6.1E-02 2.5E-04 -6.6E-03 1.0E-02 1.1E-03 9.7E-03 -1.5E-02 9.4E-03 8.2E-05 -1.1E-02 9.7E-03 -1.6E-03 -3.2E-02 1.1E-02 2.5E-03 -2.6E-04 

Table 7: Wavelengths [nm] and coefficients for initial boiling point [◦C]. Intercept β∗ = −20.0.0 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 

λ∗ 3300.4 3308.3 3332.2 3348.4 3356.5 3381.1 3414.5 3431.5 3440.0 3465.9 3474.6 3492.1 

β∗ 1.3E+01 -5.7E+00 -2.0E+00 1.0E+00 -1.7E+00 3.9E-01 2.8E-01 5.9E-01 5.0E-01 3.6E+00 6.8E-02 6.4E-01 

Table 8: Wavelengths [nm] and coefficients for density at 15◦C [g/cm3]. Intercept β∗ = 0.314.0 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 

λ∗ 3300.4 3308.3 3324.2 3332.2 3340.3 3348.4 3356.5 3364.7 3381.1 3406.1 3414.5 3431.5 3448.6 3457.2 3465.9 3483.3 3492.1 

β∗ 1.4E+02 -1.0E+02 1.2E+02 -2.1E+02 3.1E+01 2.4E+01 -3.9E+01 -5.9E+00 8.7E+00 3.5E+00 6.0E-02 2.2E+00 4.5E+01 1.6E+01 5.9E+01 2.6E+01 -2.7E-03 
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Table 9: Wavelengths [nm] and coefficients for Surface Tension at 22◦C [dynes/cm]. Intercept 

β∗ = 19.7. 

w1 w2 w3 w4 w5 w6 w7 

w 3300.4 3348.4 3356.5 3397.7 3465.9 3474.6 3492.1 

c 1.3E-01 -1.6E-03 -3.0E-01 -4.6E-02 4.1E-01 1.2E-01 -2.9E-04 

Table 10: Wavelengths [nm] and coefficients for NHC [MJ/kg]. Intercept β∗ = 48.5.0 

w1 w2 w3 w4 w5 w6 w7 

λ∗ 3316.2 3332.2 3356.5 3364.7 3389.4 3431.5 3465.9 

β∗ -2.9E+02 -6.2E+02 1.9E+02 2.0E+01 1.8E+02 -8.9E+02 -4.6E+02 

Table 11: Wavelengths [nm] and coefficients for C2H4 yield. Intercept β∗ = 5.05.0 

w1 w2 w3 w4 w5 w6 w7 w8 

λ∗ 3300.4 3324.2 3356.5 3389.4 3440.0 3457.2 3465.9 3474.6 

β∗ 9.3E+01 -9.8E+02 2.6E+02 -2.0E+02 -1.5E+01 -1.7E+03 7.1E+01 5.8E+02 

Table 12: Wavelengths [nm] and coefficients for flash point [◦C]. Intercept β∗ = −51.9.0 

w1 w2 w3 w4 w5 w6 w7 

λ∗ 3300.4 3316.2 3324.2 3356.5 3448.6 3465.9 3492.1 

β∗ 4.1E+00 -2.0E+00 1.1E+00 -2.0E+00 1.7E+00 3.4E+00 2.1E-01 

Table 13: Wavelengths [nm] and coefficients for LBO. Intercept β∗ = 0.0762.0 

w1 w2 w3 w4 w5 w6 

λ∗ 3324.2 3348.4 3356.5 3414.5 3423.0 3474.6 

β∗ 7.9E-04 5.8E-05 1.3E-05 -6.1E-05 -1.8E-06 1.8E-04 

Table 14: Wavelengths [nm] and coefficients for DCN. Intercept β∗ = 26.7.0 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 

λ∗ 3300.4 3308.3 3348.4 3356.5 3364.7 3381.1 3397.7 3440.0 3448.6 3465.9 3492.1 

β∗ -6.9E-02 -1.4E+00 -7.6E-01 9.2E-03 2.8E-01 -1.7E-01 1.7E-01 -6.9E-01 -2.0E-03 5.8E-01 5.6E-01 
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Table 15: Wavelengths [nm] and coefficients for IDT at 1300K, 4atm [µs]. Intercept β∗ = 748.0 

w1 w2 w3 

λ∗ 3340.3 3381.1 3406.1 

β∗ 9.8E+01 3.0E-01 -3.1E+00 

Table 16: Wavelengths [nm] and coefficients for kinematic viscosity at -20◦C [mm2/s]. Inter-

cept β∗ = −5.21.0 

w1 w2 w3 w4 w5 w6 w7 w8 

λ∗ 3300.4 3308.3 3316.2 3356.5 3397.7 3431.5 3448.6 3474.6 

β∗ 3.0E-03 -1.7E-01 -1.6E-01 -2.5E-01 -3.7E-03 -1.5E-01 -1.6E-01 8.9E-01 

Table 17: Wavelengths [nm] and coefficients for Total Cycloparaffins [wt %]. Intercept β∗ = 0 

−138. 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 

λ∗ 3300.4 3308.3 3332.2 3364.7 3372.9 3423.0 3440.0 3448.6 3465.9 3474.6 3483.3 

β∗ 1.1E+03 4.6E+02 -2.9E+04 -7.6E+03 -7.2E+02 5.0E+03 -8.1E+03 3.9E+04 2.4E+03 1.7E+04 8.1E+03 
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Table 18: List of fuels and their GC×GC compositions. The labeling of fuels is consistent 

with [46]. 

Total Aromatics Total Cycloparaffins Total iso Paraffins Total n Paraffins 
Category Fuel POSF C H 

[wt %] [wt %] [wt %] [wt %] 

A fuel A1 10264 10.8 21.8 13.4 20.1 39.7 26.8 

A fuel A2 10325 11.4 22.1 18.7 31.9 29.5 20.0 

A fuel A3 10289 11.9 22.6 20.6 47.4 18.1 13.9 

A fuel A4 12784 11.5 22.1 18.6 43.2 23.2 15.1 

A fuel A5 12831 12.1 23.2 18.2 41.4 25.2 15.2 

A fuel A6 12843 11.7 22.4 18.6 42.4 23.8 15.3 

A fuel A7 12905 11.5 22.4 21.2 25.5 29.6 23.8 

A fuel A8 12906 11.4 22.1 17.4 38.4 25.1 19.0 

Blend fuel 20%A2-80%C1 12.3 26.0 4.3 7.3 83.6 4.6 

Blend fuel 50%A2-50%C1 11.9 24.4 10.1 17.3 61.6 10.9 

Blend fuel 80%A2-20%C1 11.6 23.0 15.4 26.3 41.7 16.5 

Blend single BF1 9.4 19.1 20.4 0.0 0.0 79.6 

Blend single BF10 8.4 16.4 47.9 0.0 26.0 26.1 

Blend single BF11 8.2 17.2 0.0 0.0 100.0 0.0 

Blend single BF12 8.0 14.9 29.8 0.0 35.4 34.9 

Blend single BF13 9.2 19.3 15.0 0.0 67.8 17.2 

Blend single BF14 8.6 17.8 38.4 0.0 43.9 17.7 

Blend single BF2 8.8 16.3 40.8 0.0 0.0 59.2 

Blend single BF3 7.6 10.7 80.4 0.0 0.0 19.6 

Blend single BF4 8.2 13.6 60.2 0.0 0.0 39.8 

Blend single BF5 9.6 21.2 100.0 0.0 0.0 0.0 

Blend single BF6 9.2 20.4 0.0 0.0 19.3 80.7 

Blend single BF7 8.8 19.6 0.0 0.0 39.7 60.3 

Blend single BF8 8.4 18.8 0.0 0.0 60.0 40.0 

Blend single BF9 8.0 14.3 0.0 0.0 79.9 20.1 

Blend single Won10 10.6 23.3 0.0 0.0 33.8 66.2 

Blend single Won11 8.7 19.4 0.0 0.0 64.6 35.4 

Blend single Won12 8.9 19.9 0.0 0.0 53.3 46.7 

Blend single Won13 9.2 20.4 0.0 0.0 39.0 61.0 

Blend single Won14 9.5 21.0 0.0 0.0 25.6 74.4 

Blend single Won15 9.9 21.7 0.0 0.0 6.6 93.4 

Blend single Won6 9.0 20.1 0.0 0.0 73.9 26.1 

Blend single Won7 9.4 20.8 0.0 0.0 65.4 34.7 

Blend single Won8 9.8 21.5 0.0 0.0 55.8 44.2 

Blend single Won9 10.1 22.2 0.0 0.0 48.1 51.9 

11498 

C fuel C1 12368 12.6 27.2 0.0 0.1 99.6 0.0 

12384 

12344 
C fuel C4 11.4 24.8 0.4 0.4 98.5 0.2 

12489 

12345 

12713 
C fuel C5 9.7 18.7 30.7 0.1 51.6 17.7 

12789 

12816 

C fuel C7 12925 12.1 23.9 4.9 62.3 29.5 3.3 

C fuel C8 12923 11.6 21.4 27.3 38.0 21.0 13.7 

CN fuel CN30 13197 11.6 23.1 13.1 12.6 65.0 9.4 

CN fuel CN35 13198 11.4 23.3 10.3 16.9 61.7 11.1 

CN fuel CN40 13199 11.7 23.3 12.8 27.8 47.8 11.6 

CN fuel CN45 13200 11.4 23.1 8.7 30.1 47.0 14.2 

CN fuel CN50 13201 11.1 22.5 8.3 34.8 39.4 17.5 

CN fuel CN55 13202 11.5 23.3 7.4 30.7 34.7 24.4 

Pure aromatics Toluene 7.0 8.0 100.0 0.0 0.0 0.0 

Pure cyclo- Cyclodecane 10.0 20.0 0.0 100.0 0.0 0.0 

Pure cyclo- Cycloheptane 7.0 14.0 0.0 100.0 0.0 0.0 

Pure cyclo- Cyclooctane 8.0 16.0 0.0 100.0 0.0 0.0 

Pure n- iso- 2,2-Dimethyl butane 6.0 14.0 0.0 0.0 100.0 0.0 

Pure n- iso- 2,3-Dimethylbutane 6.0 14.0 0.0 0.0 100.0 0.0 

Pure n- iso- 3-Methylhexane 8.0 18.0 0.0 0.0 100.0 0.0 

Pure n- iso- 3-Methylpentane 6.0 14.0 0.0 0.0 100.0 0.0 

Pure n- iso- Isooctane 8.0 18.0 0.0 0.0 100.0 0.0 

Pure n- iso- n-Decane 10.0 22.0 0.0 0.0 0.0 100.0 

Pure n- iso- n-Dodecane 12.0 26.0 0.0 0.0 0.0 100.0 

Pure n- iso- n-Heptane 7.0 16.0 0.0 0.0 0.0 100.0 

Pure n- iso- n-Hexane 6.0 14.0 0.0 0.0 0.0 100.0 

Pure n- iso- n-Nonane 9.0 20.0 0.0 0.0 0.0 100.0 

Pure n- iso- n-Pentadecane 15.0 32.0 0.0 0.0 0.0 100.0 

Pure n- iso- n-Tridecane 13.0 28.0 0.0 0.0 0.0 100.0 

Pure n- iso- n-Undecane 11.0 24.0 0.0 0.0 0.0 100.0 

Pure n- iso- n-Octane 8.0 18.0 0.0 0.0 0.0 100.0 
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Table 19: Physical and chemical properties of fuels in the training dataset. The labeling of 

fuels is consistent with [46]. 

Category Fuel MW ratio H/C IBP [43] Density [43] ST NHC C2H4 yield [46] FP LBO [38, 39] DCN [40, 41, 42] IDT [46] KV Total cyclo 

A fuel A1 151.4 2.019 150 0.7799 23.8 43.1 1.58 42 0.08066 48.61 997.8 3.5 20.08 

A fuel A2 158.9 1.939 159.2 0.803 24.8 43.06 1.69 48 0.08061 48 1044 4.5 31.86 

A fuel A3 165.4 1.899 177.9 0.8268 25.7 43 1.599 60 0.08142 39.07 1059 6.5 47.39 

A fuel A4 160.1 1.922 168 43.1 1.518 41.52 1210 4.9 43.16 

A fuel A5 168.4 1.917 161 43.1 1.248 45.05 1151 6.3 41.4 

A fuel A6 162.8 1.915 173 43.1 1.633 41.91 1088 5.5 42.38 

A fuel A7 160.4 1.948 1.652 49.11 1169 25.48 

A fuel A8 158.9 1.939 1.677 46.34 1055 38.44 

Blend fuel 20%A2-80%C1 173.9 2.112 168.8 0.768 43.78 0.821 50 0.08462 23.86 4.7 7.325 

Blend fuel 50%A2-50%C1 167.8 2.045 162.5 0.781 43.5 1.035 50 0.08311 33.28 4.5 17.31 

Blend fuel 80%A2-20%C1 162.3 1.98 158.3 0.795 43.3 1.358 48 0.08178 41.78 4.5 26.32 

Blend single BF1 131.8 2.039 62.14 0 

Blend single BF10 117.3 1.955 43.27 0 

Blend single BF11 115.5 2.098 32.99 0 

Blend single BF12 110.5 1.865 31.66 0 

Blend single BF13 129.9 2.091 57.14 0 

Blend single BF14 120.8 2.075 45.52 0 

Blend single BF2 121.6 1.856 54.14 0 

Blend single BF3 101.8 1.416 28.58 0 

Blend single BF4 111.9 1.656 44.18 0 

Blend single BF5 136.6 2.208 61.21 0 

Blend single BF6 130.9 2.217 55.08 0 

Blend single BF7 125.2 2.227 46.93 0 

Blend single BF8 119.6 2.238 36.59 0 

Blend single BF9 110.8 1.772 36.93 0 

Blend single Won10 151.1 2.188 65 0 

Blend single Won11 123.9 2.23 45 0 

Blend single Won12 127.1 2.224 50 0 

Blend single Won13 131.1 2.217 55 0 

Blend single Won14 134.8 2.211 59.1 0 

Blend single Won15 140.2 2.203 65 0 

Blend single Won6 128.6 2.221 45 0 

Blend single Won7 133.5 2.213 50 0 

Blend single Won8 138.8 2.205 55 0 

Blend single Won9 143.1 2.198 59.1 0 

C fuel C1 178.4 2.159 174.3 0.7597 23.4 43.82 0.468 49.5 0.08686 17.1 2513 5 0.05 

C fuel C4 161.6 2.175 161.5 0.7592 22.7 43.81 0.971 44.5 0.08477 28 1711 3.87 0.43 

C fuel C5 135.1 1.928 156.6 0.7689 23.8 43.01 1.764 43.5 0.08248 39.6 1264 1.96 0.07 

C fuel C7 169.1 1.975 184 0.8181 26.1 1.528 64 42.6 939 6.53 62.31 

C fuel C8 160.6 1.845 170 0.8238 26.5 1.254 56 43.5 922 4.84 37.97 

CN fuel CN30 162.3 1.991 0.915 30 1822 12.55 

CN fuel CN35 160.1 2.044 0.7946 34 1551 16.93 

CN fuel CN40 163.7 1.991 1.193 40 1390 27.83 

CN fuel CN45 159.9 2.026 1.328 44 1210 30.14 

CN fuel CN50 155.7 2.027 1.937 51 937.8 34.81 

CN fuel CN55 161.3 2.026 1.65 54 906 30.74 

Pure aromatics Toluene 92 1.143 110.6 40.59 6 6 0 

Pure cyclo- Cyclodecane 140 2 201 0.857 100 

Pure cyclo- Cycloheptane 98 2 118.4 0.81 100 

Pure cyclo- Cyclooctane 112 2 149 0.831 22.3 100 

Pure n- iso- 2,2-Dimethylbutane 86 2.333 50 0.649 24.4 0 

Pure n- iso- 2,3-Dimethylbutane 86 2.333 58 0 

Pure n- iso- 3-Methylhexane 114 2.25 92 0.687 42 0 

Pure n- iso- 3-Methylpentane 86 2.333 63 0.66 30.7 0 

Pure n- iso- Isooctane 114 2.25 99 44.31 17.5 0 

Pure n- iso- n-Decane 142 2.2 174 0.73 23.83 44.24 46 0 

Pure n- iso- n-dodecane 170 2.167 216 0.75 25.35 44.15 80 0.07701 73 0 

Pure n- iso- n-Heptane 100 2.286 98 0.683 20.14 44.57 -7 0.08021 53.5 0 

Pure n- iso- n-Hexane 86 2.333 69 0.664 18.43 44.75 49 0 

Pure n- iso- n-Nonane 128 2.222 151 0.719 22.85 44.31 31 60.9 0 

Pure n- iso- n-Pentadecane 212 2.133 270 0.769 96 0 

Pure n- iso- n-Tridecane 184 2.154 234 0.756 90 0 

Pure n- iso- n-Undecane 156 2.182 196 0.74 24.66 44.19 61 83 0 

Pure n- iso- Octane 114 2.25 126 0.702 21.61 44.43 12 58.2 0 

38 



    

           

     

  

      

        

     

        

   

    

   

       

                        

   Technical Report Documentation Page 
1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. 

4. Title and Subtitle 5. Report Date 

6. Performing Organization Code 

7. Author(s) 8. Performing Organization Report No. 

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 

11. Contract or Grant No. 

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered 

14. Sponsoring Agency Code 

15. Supplementary Notes 

16. Abstract 

17. Key Words 18. Distribution Statement 

19. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 
21. No. of Pages 22. Price 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 


	Structure Bookmarks
	Version of Record: Manuscript_b247bab84e69073b1a12d1708979c41b 
	https://www.sciencedirect.com/science/article/pii/S0016236119310671 

	On estimating physical and chemical properties of hydrocarbon fuels using mid-infrared FTIR spectra and regularized linear models 
	On estimating physical and chemical properties of hydrocarbon fuels using mid-infrared FTIR spectra and regularized linear models 
	Yu Wang, Yiming Ding, Wei Wei, Yi Cao, David F Davidson, Ronald K Hanson
	a,∗ 
	a 
	a 
	a 
	a 

	Stanford University, Stanford, California 94305 
	a

	Abstract 
	The concept of a compact, economical FTIR-based analyzer for estimating the properties of hydrocarbon fuels with small amounts of fuel is proposed. The high correlations between mid-IR FTIR absorption spectra of fuel vapor in the range 3300 to 3550 nm and 15 physical and chemical properties, such as density, initial boiling point, surface tension, kinematic viscosity, number of carbon and hydrogen per average molecule, and derived cetane number, for 64 hydrocarbon fuels are demonstrated. Lasso-regularized l
	-

	Corresponding author Email address: (Yu Wang) 
	∗
	yuwangme@stanford.edu 

	Preprint submitted to Fuel June 19, 2019 
	© 2019 published by Elsevier. This manuscript is made available under the Elsevier user license 
	https://www.elsevier.com/open-access/userlicense/1.0/ 
	https://www.elsevier.com/open-access/userlicense/1.0/ 

	10 
	Nomenclature 
	IR Infrared FTIR Fourier-transform infrared GC Gas chromatography GC×GC Two-dimensional GC 
	15 
	CS Cross section DCN Derived cetane number by ASTM D6890 IDT Ignition delay time LBO Lean blow-out FP Flash point by ASTM D93 Total C Total number of carbon atoms per average molecule
	20 
	Total H Total number of hydrogen atoms per average molecule MW Molecular weight IBP Initial boiling point by ASTM D86 ρ Density at 15C by ASTM D4052 
	◦

	25 
	ST Surface tension at 22C by ASTM D1331 NHC Net heat of combustion by ASTM D4809 KV Kinematic viscosity at -20C by ASTM D445 Total cyclo Total cycloparaﬃn weight percentage CV Cross validation 
	◦
	◦

	30 
	CVE Cross validation error NJFCP National jet fuel combustion program 
	1. Introduction 
	In the past two decades, Alternative Jet Fuel (AJF) development has been a popular combustion research topic due to an increasing interest in reducing 
	35 combustion emissions, mitigating climate change, and improving energy supply security [1]. In particular, the National Jet Fuel Combustion Program (NJFCP) was established by the Federal Aviation Administration (FAA) in 2014, supporting a collaborative eﬀort involving over 30 institutions to understand the impact of jet fuel physical properties and chemical composition on combustion behav
	-
	-

	40 ior. A particular goal of this program is to eventually streamline the process of AJF certiﬁcation, which is currently a major hurdle for market penetration [1, 2, 3]. According to market research [4], the global alternative fuel and hybrid vehicle market is expected to reach $614 billion (about 3% of the US GDP in 2017) by 2022 and it is currently growing at compound average growth rate of 
	45 12.9%. Within the kinetics working group of NJFCP, there has been remarkable progress [2, 3] in applications of advanced laser diagnostics techniques in shock tube experiments [5, 6, 7, 8, 9, 10, 11] to characterize fuel pyrolysis and combustion behavior of a range of conventional, alternative, and synthetic jet fuels 
	-

	50 [12], enabling useful correlations between DCN and other jet fuel properties and contributing both to detailed chemical kinetic modeling and the hybrid chemistry (HyChem) approach [13, 14, 15, 16]. However, it is still diﬃcult to physically model and calculate jet fuel properties. One of the main diﬃculties comes from jet fuels’ complicated compositions that usually consist of hundreds 
	55 of components. To overcome this challenge, direct estimation of these properties of hydrocarbon fuels from relatively accessible and available infrared spectral data has been proposed and studied by various researchers. 
	Zanier-Szydlowski et al. proposed in [17] methods using multivariate linear regression and liquid-phase near-IR spectra in the range 1562 to 2222.2 nm to 
	60 predict the refractive index at 20C, the density at 15C, the weight percentage of hydrogen, the percentage of aromatic carbon and the weight percentage 
	◦
	◦
	-

	of mono-, di-and total aromatics for hydrotreated gas oils. Balabin and Lomakina discussed in [18] the need for rapid, robust, and cheap quality control of industrial production in real time and online, which motivates the combina
	-
	-

	65 tion of informative liquid-phase near-IR spectra in the range of 909 to 2500 nm with advanced machine learning tools to predict properties of interest. They pointed out that such a need stands out especially in the multi-trillion dollar but environmentally-unfriendly petroleum industry and also in the fast-growing biofuel industry. They also discussed the potential nonlinearity in the spectrum
	-

	70 property relations due to strong intermolecular and intramolecular interactions, and shift of vibrational bands. It is expected that even relatively weak van der Waals force can aﬀect the accuracy of linear models. Torres et al. proposed to apply support vector machine (SVM) and partial least square (PLS) models on liquid-phase mid-FTIR spectra in the range 2500 nm to 16.7 µm to estimate 
	75 density, refractive index, and cold ﬁlter plugging point of biodiesel samples and their blends [19]. They reported the advantage of SVM over PLS for predicting non-linear properties. Alves et al. applied SVM to liquid-phase near-IR spectrum in the range 2096.9 to 2535.5 nm to predict ﬂash point and cetane number and compared the results against those of PLS [20]. Da Silva et al. used 
	-

	80 liquid-phase spectra in both near-and mid-IR (833.3 nm to 15.4 µm) and machine learning models to classify if a gasoline contains dispersant and detergent additives [21]. More related work can be found in [22, 23, 24, 25, 26]. 
	-

	Similarly, estimation methods for jet and diesel fuel properties using nuclear magnetic resonance (NMR) spectra as inputs were also proposed in studies such 
	85 as [27, 28]. In a similar way, the authors of [29, 30] proposed estimation methods based on SVM and PLS using gas chromatography and mass spectrum data. In addition, various estimation methods based on quantitative structure property relationship (QSPR) were proposed in [31, 32, 33, 34]. A more comprehensive review can be found in [35] by Dryer. To use QSPR to estimate properties, a 
	90 wide number of one-dimensional (1D), two-dimensional (2D), and 3D molecular descriptors are ﬁrst calculated. Then these quantitative descriptors, or features, are fed into both linear and nonlinear machine learning models such as multi
	90 wide number of one-dimensional (1D), two-dimensional (2D), and 3D molecular descriptors are ﬁrst calculated. Then these quantitative descriptors, or features, are fed into both linear and nonlinear machine learning models such as multi
	-

	variate linear regression, PLS, artiﬁcial neutral network, SVM, etc. Procedures such as recursive feature elimination are employed to down-select the features. 

	95 
	In term of general procedure of building machine learning models, the step of calculating quantitative descriptors is essentially feature engineering, which refers to using domain-speciﬁc knowledge to create eﬀective features that correlate with properties of interest. Feature engineering is a powerful tool that has proven critical to many machine learning problems, but it also introduces sev
	-
	-

	100 eral potential issues. Firstly, it highly depends on the domain knowledge of the modeler. Secondly, it is often diﬃcult to evaluate the relevance and importance of features due to the overlap in information provided by them. Thirdly, feature selection is often at the discretion of modeler and lacks a uniﬁed approach. In this study, a data-driven approach inspired by data science and statistics 
	105 is taken to directly develop correlations between fuel properties without compositional and kinetic modeling of jet fuels. The main goal is to develop practical and meaningful estimation methods for properties of hydrocarbon fuels using mid-IR spectra of fuel vapor. More speciﬁcally, in section 3, correlations between FTIR spectra from 3350 to 3450 nm and 15 physical and chemical properties are 
	-

	110 studied. Regularized linear models are proposed for each of these properties in section 4. This method has four practical advantages compared to the methods reviewed above. Firstly, feature engineering is not needed. A measured mid-IR FTIR spectrum is used as input without the need of preprocessing. The absorption at each wavelength is eﬀectively one feature. Secondly, feature selection is 
	-

	115 performed systematically through model regularization. Manual selection is not needed. Thirdly, as demonstrated in section 4, instead of using more complicated non-linear models, linear models using mid-IR spectra data can achieve high estimation accuracy. Fourthly, this method provides estimation of multiple physical and chemical properties with one FTIR spectrum for various types 
	-
	-

	120 of vaporized hydrocarbon fuels including pure hydrocarbons and their blends, distillate and synthetic jet fuels and their blends. These advantages will be discussed in greater detail in the following text. Both spectral and property data presented in this paper come from var
	-

	ious sources. Out of the 64 vapor-phase FTIR spectra of hydrocarbon fuels 
	125 examined in the study, 22 (distillate and synthetic jet fuels) were measured at Stanford University using a Nicolet 6700 FTIR spectrometer; 18 (pure hydrocarbons, including n-, iso-, cyclo-paraﬃns and toluene) are taken from the Paciﬁc Northwest National Laboratory (PNNL) gas-phase database for quantitative infrared spectroscopy [36]; and the spectra of 24 blends of jet fuels or 
	-
	-

	130 single hydrocarbons are calculated from the aforementioned 22 plus 18 FTIR spectra. IDT and CHyield were measured in Stanford’s Flexible Applications Shock Tube (FAST) facility [37]. Derived cetane number (DCN), net heat of combustion (NHC), two-dimensional GC (GC×GC) and all physical properties of all jet fuels were measured by the Air Force Research Laboratory (AFRL) 
	2
	4 

	135 and provided through the NJFCP. LBO data were taken from literature [38, 39]. All properties of pure hydrocarbons and their blends were taken from various literature and online sources, including [40, 41, 42, 43]. 
	2. Fourier-transform infrared spectroscopy 
	Figure
	Figure 1: Example optical setup of FTIR spectrometer [44, p. 41-47] 
	Fourier-transform infrared spectroscopy is a widely used, mature technology 
	(a detailed introduction can be found in [44]). Here we provide a brief review. A 
	FTIR spectrometer typically employs a broadband IR light source, a Michelson 
	interferometer, and an IR detector to measure absorbance of a test medium (in our case fuel vapor) that can be used to calculate absorption coeﬃcients and cross sections. A schematic for a typical optical setup of an FTIR is shown in 
	145 Figure 1. As the moving mirror travels (measured by displacement d), diﬀerent wavelengths from the light source are modulated due to inference. During this process, the spectrometer records the light signal in voltage vs the mirror displacement d, producing an interferogram. By performing a Fourier transformation on the interferogram, the absorption spectrum of the test gas can be 
	-
	-

	150 inferred. For the PNNL database, the spectral resolution is about 0.1 cmand the 1σ statistical uncertainty in absorbance value is < 2% [36]; jet fuels spectra were measured at Stanford with spectral resolution about 0.06 cmand uncertainty around 2%. The details on experimental procedure for measurements of vapor-phase spectra at Stanford are provided in [45]. 
	−1 
	−1 
	-

	155 
	2.1. Advantages of using vapor-phase mid-IR spectrum 
	2.1. Advantages of using vapor-phase mid-IR spectrum 
	Our vapor-phase mid-IR FTIR measurements utilize fuel vapor at 50 or 80C (rather than liquid as in [17, 18, 20, 21, 22, 23, 24, 25, 26]) to characterize the hydrocarbon fuels’ spectral features. These spectra are not sensitive to temperature from 50 to 80 C. This method has several advantages. Firstly, the 
	◦
	◦

	160 spectrum-property relations for fuel vapor are less susceptible to non-linearity than liquid as described in [18], and the calculation of mid-IR spectra for fuel mixtures is straightforward provided that the mole fraction and spectrum of each individual component is available as discussed in [46]. Beer-Lambert’s Law for ideal gas and ideal gas mixtures shown in Equation 1 and Equation 2 
	165 can be utilized to calculate the absorption cross section σλ at each wavelength λ. 
	PL 
	It 

	α(λ)= − ln = σλ (1)
	IRT 
	0 

	X
	PL 
	It 
	Pxi

	α(λ)= − ln = σλ = σλ,i L (2)
	IRT RT 
	0 

	i 
	where the summation is over all components i in a mixture; α(λ) is absorbance; It and Iare the laser intensities before and after passage through the absorbing gas; σλ,i is the absorption cross section for component i at wavelength λ; 170 P is pressure; xi is the mole fraction of component i; R is the universal gas constant; T is temperature. Equation 2 enables a simple calculation of a fuel mixture’s spectrum provided that the mole fractions xi and the spectrum of all components σλ,i are known. This is of 
	0 
	-
	-

	175 fuels. Secondly, the strong absorption features in the mid-IR region enables high signal-to-noise ratio spectra with small amounts of hydrocarbon fuel. This is again of practical importance for alternative fuel development as their supply is typically limited and may be available only in cubic-centimeter volumes. Thirdly, FTIR measurements are relatively simple and economical compared 
	-

	180 with NMR and GC×GC methods. Lastly, mid-IR spectra in the range 3300 to 3550 nm provide rich quantitative information on the molecular structure of hydrocarbon fuels. As shown in section 4, a full mid-IR spectrum in this range, subjected to statistical analysis, allows simultaneous and high-ﬁdelity estimations of multiple physical and chemical properties. 
	185 
	3. Demonstration of correlation between FTIR spectra and physical and chemical properties 
	Table 1: Four absorption features of hydrocarbons 
	λ [µm] 
	λ [µm] 
	λ [µm] 
	Dominant Motion [47, 48, 49] 

	3.32 
	3.32 
	stretch of benzene H 

	3.37 
	3.37 
	asymmetric stretch of – CH3 

	3.41 
	3.41 
	asymmetric stretch of – CH2 – 

	3.49 
	3.49 
	symmetric stretch of – CH3, – CH2 – 


	As mentioned in previous sections, mid-IR spectra in the wavelength range 3350 to 3450 nm are utilized in this study. As shown in Figure 2 and Table 1 
	Figure
	Figure 2: Jet fuel FTIR spectra at 80C 
	◦

	(or Figure 1 and Table 1 of [46]), there are four main absorption features in 
	190 this range due to the vibration of C–H bonds from diﬀerent functional groups: benzene ring, –CH, –CH– , etc. Since the physical and chemical properties depend strongly on the functional groups in hydrocarbons, the spectrum-functional group relations provide the physical foundation for using mid-IR spectra to estimate fuel properties. In the rest of this section, the strong correlations 
	3
	2 
	-
	-

	195 between mid-IR spectra and fuels’ properties are demonstrated. 

	3.1. Normalization to the FTIR spectrum 
	3.1. Normalization to the FTIR spectrum 
	Both the absolute and normalized (by the integrated area) FTIR spectra in 
	the wavelength range 3350 to 3450 nm are utilized. The shape of the normalized 
	spectrum reﬂects the proportions of chemical component classes and functional 
	200 groups; the absolute absorption cross section in the unnormalized spectrum reﬂects average molecule size. It is of note that the shapes of unnormalized and normalized spectra are the same for each fuel. In this paper, we attempt the correlations with both unnormalized and normalized spectra and select the one with the best correlation. In general, properties (such as CHyield as deﬁned 
	-
	2
	4 

	205 
	in the caption of Figure 15, total cycloparaﬃn weight percentage, and density) 
	that strongly depend on molecular structure correlate best with the normalized spectrum; properties (such as total number of carbon/hydrogen atoms per average molecule, molecular weight) that strongly depend on molecule size correlate best with the unnormalized spectrum. Table 2 summarizes all physical and chemical properties studied in this study and whether the spectrum used is normalized or not. 
	-
	-

	3.2. Correlations between physical and chemical properties and absorption cross section at a single wavelength 
	3.2. Correlations between physical and chemical properties and absorption cross section at a single wavelength 
	Algorithm 1: Calculate sample Pearson correlation coeﬃcient ρ(σλ,P ) of training dataset F for each property P , and for each wavelength λ. An example of ρ(σλ,P ), where P is total hydrogen per average molecule, is shown in the bottom ﬁgure of Figure 3b. 
	-
	-

	Result: ρ(σλ,P ) for each property P do for each λ in 3350 to 3450 nm do 
	1. 
	1. 
	1. 
	generate a vector of cross sections σλ at wavelength λ by interpolating the measured FTIR spectrum 

	2. 
	2. 
	calculate sample Pearson correlation coeﬃcient between σλ and P , as deﬁned in Equation 3 


	end 
	end 
	Here we use the sample Pearson correlation coeﬃcient ρ(σλ,P ) deﬁned in Equation 3 as a measure of sensitivity and linearity of the quantitative relation between a physical/chemical property P and absorption cross section σλ at a wavelength λ. 
	P Ł.
	¯
	(σλ,f − σ¯ λ) Pf − P ρ(σλ,P )= (3)
	f ∈F 

	P PŁ.
	P PŁ.
	q
	2


	2 
	¯
	(σλ,f − σ¯ λ) Pf − P
	f ∈F f∈F where f denotes a fuel in dataset F; σλ,f is the absorption cross section of fuel f at wavelength λ; σ¯ λ is the average of absorption cross sections at wavelength 
	f ∈F f∈F where f denotes a fuel in dataset F; σλ,f is the absorption cross section of fuel f at wavelength λ; σ¯ λ is the average of absorption cross sections at wavelength 
	¯ 

	220 λ over all fuels in F; Pf is the property P of fuel f; P is the average of property P over all fuels in F. For a dataset F of fuels listed in Table 18, ρ(σλ,P ) measures the linearity between σλ and P and the quality of linear regression between them; ρ is always within ±1 and ρ = ±1 indicates a perfect linear relation; ρ = 0 implies zero correlation between σλ and P for dataset F. In 
	225 this section, dataset F includes only fuels that are not pure aromatics or pure cycloparaﬃns from Table 18. 
	The most sensitive wavelength λis selected such that the absorption cross 
	∗ 

	section σλ has the highest sample Pearson correlation coeﬃcient with the target 
	property P , i.e. 
	λ = arg max ρ(σλ,P ). (4) 
	∗ 

	230 The procedure of selecting the most sensitive wavelength λis outlined in Algorithm 1. For each property P of interest, the algorithm iterates though all 1600 wavelengths in the range of 3350 to 3450 nm (width of wavelength slice equals 100/1600 = 0.0625 nm) and examines the sample Pearson correlation coeﬃcient between the absorption cross section σλ and property P . Then it 
	∗ 
	-

	235 picks the most sensitive wavelength λdeﬁned by Equation 4. It is of note that we only reported the most sensitive wavelength in region 3350 -3450 nm due to a consideration of signal to noise ratio, i.e. the absorption is much stronger in the range of 3350 -3450 nm. In addition, the absorption cross sections in 3450 -3550 nm strongly correlate with those in 3350 -3450 nm, since they are both 
	∗ 

	240 due to molecular motions of – CH– and –CH. Hence, when seeking for the most sensitive single wavelength, there is not much to gain by including 3450 3550 nm. 
	2 
	3
	-

	The correlations between mid-IR FTIR spectra and 15 physical and chemical properties listed in Table 2 are analyzed. Detailed descriptions of each 
	-

	245 column of Table 2 are included in its caption. All property values are listed in Table 19. Here we present two examples: total number of hydrogen per average molecule (Figure 3) and DCN (Figure 4). Figure 3 shows that the total number 
	Figure
	(a) (b) 
	Figure 3: Total number of hydrogen per average molecule estimation using absorption cross section at λ= 3430.8 nm. (a) Total number of hydrogen per average molecule vs absorption cross section at 3430.8 nm. (b) Top: example absorption spectrum of a nominal jet fuel A2 (see Table 18); bottom: Pearson correlation coeﬃcient ρ(σλ,P ) for λ ∈ [3300, 3550] nm, where P stands for total number of hydrogen per average molecule, for all 64 fuels in Table 18. 
	∗ 

	Figure
	(a) (b) 
	Figure 4: DCN estimation using absorption cross section at 3408.8 nm. (a) DCN vs absorption cross section at λ= 3408.8 nm. (b) Top: example absorption spectrum of a nominal jet fuel A2 (see Table 18); bottom: Pearson correlation coeﬃcient ρ(σλ,P ) for λ ∈ [3300, 3550] nm, where P stands for DCN, for 61 fuels in Table 18 for which DCN is available. 
	∗ 

	of hydrogen per average molecule can be well estimated using the unnormalized absorption cross section σ.8nm for various types of hydrocarbon fuels with Pearson correlation coeﬃcient ρ =0.95. Figure 4 shows the correlation between derived cetane number (DCN) and the absorption cross section σ.8nm with ρ =0.92. As a summary of the most sensitive wavelength to each property, Fig
	3430
	3408
	-

	Figure
	Figure 5: Top: most sensitive wavelength from 3350 to 3450 nm (shaded area) for 15 physical and chemical properties over the set of 64 fuels. Plotted here is the FTIR spectrum for A2 fuel (see Table 18). All correlations have sample Pearson correlation coeﬃcient ρ ∈ [0.74, 0.95]; bottom: the sample Pearson correlation coeﬃcient at λfor each of the 15 properties. 
	∗ 

	ure 5 visualizes their spectral location on the unnormalized FTIR spectrum of a nominal distillate jet fuel A2 (POSF10325, with detailed description in Table 18 
	255 and [12]). In Figure 5, the sample Pearson correlation coeﬃcients range from 
	0.74 to 0.95 at the most sensitive wavelength for each property. Not surprisingly, important combustion properties, such as LBO, DCN, IDT, strongly correlate with the absorption peak corresponding to the – CH– functional group (around 3410 nm) [46]; physical properties that depend strongly on molecule size, such 
	2 

	260 as total carbon/hydrogen per average molecule, molecular weight, initial boiling point, correlate well with wavelengths in between absorption features of the 
	-

	– CH– and –CHfunctional groups. The clustering around 3425 nm could be due to a clustering around density and boiling point. As pointed out in [50], many properties such as surface tension and molecular weight can be estimated 
	2 
	3 

	265 
	with density and average boiling point. These strong correlations demonstrate 
	the potential of using mid-IR FTIR spectra of fuel vapor to estimate physical and chemical properties of hydrocarbon fuels. 
	Table 2: Column “F.” shows the ﬁgure number for each regularized linear model; column “P.” is the name of physical/chemical properties; column “N.” indicates if the normalized spectrum is used or not (“F” stands for false and “T” for true); m is the total number of data points in the training dataset with corresponding property data; column “CVE” shows the 10-fold cross validation error; column “%” is deﬁned as CVE divided by the average of positive property values then multiplied by 100; Nλ is the number o
	F. 
	F. 
	F. 
	P. 
	N. 
	m 
	CVE 
	% 
	Nλ 

	7 
	7 
	Total C 
	F 
	64 
	0.315 
	3.2 
	10 

	8 
	8 
	Total H 
	F 
	64 
	0.428 
	2.1 
	10 

	9 
	9 
	MW 
	F 
	64 
	4.22 
	3.1 
	10 

	10 
	10 
	H/C ratio 
	F 
	64 
	0.0389 
	1.9 
	19 

	11 
	11 
	IBP 
	F 
	33 
	11.3 
	7.5 
	11 

	12 
	12 
	ρ 
	T 
	27 
	0.0172 
	2.3 
	16 

	13 
	13 
	ST 
	F 
	16 
	0.669 
	2.8 
	6 

	14 
	14 
	NHC 
	T 
	21 
	0.105 
	0.24 
	7 

	15 
	15 
	C2H4 yield 
	T 
	23 
	0.121 
	8.8 
	7 

	16 
	16 
	FP 
	F 
	19 
	6.64 
	14 
	6 

	17 
	17 
	LBO 
	F 
	11 
	6.49E-4 
	0.79 
	6 

	18 
	18 
	DCN 
	F 
	61 
	3.66 
	7.9 
	10 

	19 
	19 
	IDT 
	F 
	20 
	108 
	8.7 
	3 

	20 
	20 
	KV 
	F 
	15 
	0.697 
	14 
	7 

	21 
	21 
	Total cyclo 
	T 
	65 
	4.77 
	14 
	10 


	4. Regularized linear model for improved prediction accuracy 
	The predictive power of mid-IR FTIR spectra towards physical and chem
	-

	ical properties of hydrocarbon fuels is demonstrated in section 3. To obtain 
	an accurate and practical estimation method for these properties, we choose to 
	use multiple wavelengths selected (by algorithm) from the full spectrum in 3300 to 3550 nm instead of using single wavelengths as in section 3. In the following sections, we present cross-validated linear models with Lasso regularization 
	-

	275 trained for each of the properties. In this section, all 64 fuels listed in Table 18 are included in the training dataset. All property values are listed in Table 19. The procedure of model development is outlined in Algorithm 2. For each property of interest, the algorithm generates an optimal model (and an optimal βµ as deﬁned in Equation 5) for each µ (as deﬁned in Equation 5) in a sequence of 
	-

	280 µ’s that eventually results in a diﬀerent number of selected wavelengths. Then the algorithm compares these optimal models by their 10-fold cross validation error [51] (denoted eµ) and picks the one with the lowest error. 
	Algorithm 2: Calculate coeﬃcients βfor each property with the best 10-fold cross validation error 
	∗ 

	Result: β(P ) for each property P Generate a sequence Sµ of µ’s, such that logµ ∈ [−10, 10] for each property P do 
	∗
	10 

	for each µ in Sµ do 
	1) generate vector Y and matrix X as deﬁned for Equation 5 
	2) solve minimization problem as deﬁned in Equation 5 and obtain βµ 
	3) perform 10-fold cross validation for µ, obtain cross validation error eµ 
	end 
	1. plot eµ against µ and obtain Figure 6 
	∗
	2. 
	2. 
	2. 
	ﬁnd µ = arg min eµ (left dashed line in Figure 6) 

	3. 
	3. 
	save β(P )= βµ ∗ 
	∗



	end 


	4.1. Lasso regularization and cross validation 
	4.1. Lasso regularization and cross validation 
	In this section, we denote the discretized FTIR spectrum as matrix X ∈ 
	m×n 
	R

	285 and the properties as vector Y ∈ R, where m is the number of fuels in the training dataset with corresponding property data and n is the number of wavelengths plus one (intercept). The FTIR spectrum is discretized by keeping 24 evenly separated wavelengths (and hence n = 24+1 = 25). The discretization helps to reduce noise in the spectrum while retaining key spectral features. It 
	m 

	290 is of note that n could be larger than m for some properties in Table 2 (note that the number of fuels is also denoted as m in Table 2). In an ordinary least square (OLS) regression setup, the following optimiza
	-

	tion problem is solved to obtain the optimal coeﬃcients β: 
	β = arg min ||Y − Xβ||, 
	2

	β∈Rn 
	where ||Y − Xβ||denotes the L2-norm of vector Y − Xβ. However, OLS re
	2 
	-

	295 gression is not suitable for problems with n>m. In addition, down-selection of wavelengths is preferred as information about molecular structure is not evenly distributed across all wavelengths in 3300 to 3550 nm. Hence we choose to solve the following optimization with Lasso regularization ([52, p. 68-69]) as deﬁned in Equation 5: βµ = arg min ||Y − Xβ||+ µ||β||, (5) 
	1 
	1

	β∈Rn 
	300 
	where µ> 0 is a hyper-parameter chosen by 10-fold cross validation ([52, p. 
	P
	n
	241-247]); ||β||is the L1-norm of β deﬁned as |βi|; similarly ||Y − Xβ||
	1 
	1

	i=1 
	is the L1-norm of vector Y − Xβ. The term µ||β||in the objective function in Equation 5 penalizes the magnitude of β and serves to limit the degree of freedom of the linear model and reduce overﬁtting. It also has the beneﬁt of 
	1 

	305 promoting sparsity in βµ and hence selecting the most informative wavelengths. As mentioned above, 10-fold cross validation is performed by ﬁrst partitioning fuels into ten partitions, denoted as d,d, ··· ,d, and then for each partition of data di, a model is trained using the other nine partitions of data 
	305 promoting sparsity in βµ and hence selecting the most informative wavelengths. As mentioned above, 10-fold cross validation is performed by ﬁrst partitioning fuels into ten partitions, denoted as d,d, ··· ,d, and then for each partition of data di, a model is trained using the other nine partitions of data 
	-
	1
	2
	10
	-

	d, ··· ,di−1,di+1, ··· ,dand the trained model is evaluated on di to obtain 
	1
	10 


	310 the cross validation error. The best hyper-parameter µ is chosen to be the one corresponding to the smallest cross validation error. The choice of optimal µ reﬂects the tradeoﬀ between using more wavelengths for improved estimation accuracy and less wavelengths to control overﬁtting for better generality. This tradeoﬀ is demonstrated in Figure 6. The cross validation error is high when too 
	315 many or too few wavelengths are utilized, which corresponds to overﬁtting to noise in data and underﬁtting to signal in data. Cross validation error is chosen as the metric to compare linear models with diﬀerent numbers of wavelength because it estimates future estimation error on unseen data. 
	Figure
	Figure 6: Cross validation error vs µ for estimating molecular weight. Top axis shows the number of wavelengths used corresponding to each µ on the bottom axis. Larger µ corresponds to fewer wavelengths in the linear model. The selected µ corresponds to the left dashed line, where the cross validation error is minimized. The region to the left of the left dashed line is where the model is too large and it is overﬁtting to the data noise; the region to the right of the right dashed line is where the model is
	It is worth mentioning the equivalence between Equation 5 and Equation 6 (details provided in [52, p. 68]), where t(µ) > 0 is a decreasing function in µ> 0. The regularization term µ||β||eﬀectively limits the possible values of β. Since the objective function of Equation 5 is convex in β, eﬀective optimization 
	It is worth mentioning the equivalence between Equation 5 and Equation 6 (details provided in [52, p. 68]), where t(µ) > 0 is a decreasing function in µ> 0. The regularization term µ||β||eﬀectively limits the possible values of β. Since the objective function of Equation 5 is convex in β, eﬀective optimization 
	1 

	algorithms are available. 

	β = arg min ||Y − Xβ||subject to ||β||≤ t(µ) (6) 
	∗ 
	1 
	1 

	β∈Rn 
	The results are presented below in Figure 7-21 and Table 3-17. Each property 
	325 corresponds to a ﬁgure and table pair. For instance, the regularized linear model for estimating the total number of carbon atoms in an average molecule is shown in Figure 7 and Table 3. In Figure 7, Figure 7a demonstrates the performance of the model on the training dataset. The cross validation error (denoted CVE, both in absolute value and in percentage) and the number of fuels with this 
	330 property value (total carbon per average molecule) in the training dataset are shown in the title of the ﬁgure. A larger CVE indicates potentially larger future estimation error. CVE should be viewed as a lower bound of future prediction error, i.e. the estimation error of total carbon atoms per average molecule is estimated to be at least 3.2%. Figure 7b shows example spectra of three jet 
	335 fuels (C5, C1, A2, with detailed description available in Table 3 of [46]) and the selected wavelengths and contribution of each wavelength to the variation of total number of carbon. The contribution is calculated as the coeﬃcient of cross section at wavelength λ multiplied by the sample standard deviation of cross sections of all fuels at this wavelength. Table 3 summarizes the selected 
	340 wavelengths and the coeﬃcients β of the regularized linear model for estimating the total number of carbon per average molecule. 
	The performance and parameter statistics, including cross validation error 
	(in absolute value and in percentage) and number of wavelengths, of the 15 
	models for the 15 properties are summarized in Table 2. As shown in Table 2, 
	345 each model utilizes at most 15 wavelengths. It is worth emphasizing that the regularized linear models presented in this study apply to fuel types in the training dataset, i.e. pure hydrocarbons and their mixtures, distillate and synthetic jet fuels. Caution is advised in extending the use of these models to other fuel types such as oxygenated fuels. 
	-

	Figure
	(a) (b) 
	Figure 7: Total carbon per average molecule. (a) Calculated C using unnormalized spectrum. 
	(b) Example spectra and selected λs and variation calculated at each λ. 
	Figure
	(a) (b) 
	Figure 8: Total hydrogen per average molecule. (a) Calculated H using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	-

	350 
	4.2. Linear additivity 
	4.2. Linear additivity 
	The optimal model takes the following mathematical form 
	N ∗
	X 
	property = β+ βσλ∗ , (7)
	0 
	∗ 
	i 
	∗ 

	i 
	i=1 
	where optimal parameters N,β,β,λare all ﬁtted by the training algorithm. 
	∗
	0 
	∗
	i 
	∗
	∗ 

	i 
	One observation following the linearity of physical and chemical property in σλ(Equation 7) is that to calculate a property for a fuel mixture one can 
	i 

	355 simply take the average of the property of each component weighted by its mole fraction. This implies that linear interpolation is a reasonable approximation for 
	Figure
	(a) (b) 
	Figure 9: Molecular weight [g/mol]. (a) Calculated MW using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	Figure
	(a) (b) 
	Figure 10: Hydrogen to carbon ratio. (a) Calculated H/C ratio using unnormalized spectrum. 
	(b) Example spectra and selected λs and variation calculated at each λ. 
	this property and this training dataset regardless of whether it is truly linear in mole fractions. The percentage cross validation error (column “%”) in Table 2 is a measure of the approximation quality. For instance, denote two fuels with 
	360 average molecular formula CmHn,CmHnwith hydrogen to carbon ratio 
	1 
	1 
	2 
	2 
	n
	1 
	n
	2

	(H/C ratio) r= ,r= and consider their mixture with mole fractions 
	1 
	2 

	mm
	1 
	2 

	x,x=1 − x. Then the H/C ratio of the mixture, as derived in the equations below, is clearly not linear in mole fractions x,x, but interpolation xr+xrcan be used as a reasonable approximation considering that the percentage cross 
	1
	2 
	1
	1
	2
	1
	1 
	2
	2 

	365 validation error is 1.9% (Table 2). The quality of approximation can also be seen from Figure 10a. 
	Figure
	(a) (b) 
	Figure 11: Initial boiling point [C] by ASTM D86. Data are taken from [43]. (a) Calculated IBP using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	◦
	-

	Figure
	(a) (b) 
	Figure 12: Density [g/cm] at 15C by ASTM D4052, or at 20C. Data are taken from [43]. 
	3
	◦ 
	◦

	(a) Calculated density using normalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
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	Importantly, the regularized linear models proposed above can still estimate physical and chemical properties of hydrocarbon fuels based on its measured FTIR spectrum even if the property data for each component is not available. 
	Figure
	(a) (b) 
	Figure 13: Surface tension [dynes/cm] by ASTM D1331. (a) Calculated surface tension using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	Figure
	(a) (b) 
	Figure 14: Net heat of combustion [MJ/kg] by ASTM D4809. (a) Calculated NHC using normalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	370 This is one of the advantages of using vapor phase spectra as described in more detail in subsection 2.1. 
	4.3. R language and RStudio 
	4.3. R language and RStudio 
	Training and cross validation of the regularized linear models are performed with the R language [53] using RStudio, speciﬁcally the glmnet package [54, 55] 
	375 and cv.glmnet function, which were developed by researchers in the statistics department at Stanford University. 
	Figure
	(a) (b) 
	Figure 15: CHyield at 1300 K, 4 atm and 2 ms. It is deﬁned as the mole fraction of CHproduced at 2 ms in a jet fuel pyrolysis experiment at 1300 K and 4 atm divided by the initial jet fuel mole fraction. Data are taken from [46]. (a) Calculated CHyield using normalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
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	Figure
	(a) (b) 
	Figure 16: Flash point [C] by ASTM D93. Data are taken from [43]. (a) Calculated FP using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	◦

	5. Conclusion 
	FTIR spectroscopy is used to provide the complete spectrum for unreacted hydrocarbon fuel vapor in the range 3300 to 3550 nm. Absorption cross sections in this wavelength region contain quantitative information about molecular structure. Diﬀerent properties are most sensitive to diﬀerent wavelengths, which in turn conﬁrms the beneﬁt of using the full spectrum. Spectral data can be combined with more sophisticated statistical models, such as the regularized 
	-

	Figure
	(a) (b) 
	Figure 17: LBO. (a) Calculated LBO using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	Figure
	(a) (b) 
	Figure 18: DCN by ASTM D6890. Data are taken from [40, 41, 42]. (a) Calculated DCN using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	linear model as demonstrated, to provide accurate estimations. 
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	Figure
	(a) (b) 
	Figure 19: IDT at 1300 K, 4 atm, with equivalence ratio 1. Data are taken from [46]. (a) Calculated IDT using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
	Figure
	(a) (b) 
	Figure 20: Kinematic viscosity [mm/s] at -20C by ASTM D445. (a) Calculated kinematic viscosity using unnormalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
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	Figure 21: Total cycloparaﬃn weight percentage. (a) Calculated total cycloparaﬃn weight percentage using normalized spectrum. (b) Example spectra and selected λs and variation calculated at each λ. 
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	Table 3: Wavelengths [nm] and coeﬃcients for average number of carbon atoms. Intercept β= −1.64. 
	∗ 

	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 
	w8 
	w9 
	w10 
	w11 

	λ∗ 
	λ∗ 
	3300.4 
	3308.3 
	3324.2 
	3332.2 
	3348.4 
	3356.5 
	3364.7 
	3381.1 
	3431.5 
	3465.9 
	3492.1 

	β∗ 
	β∗ 
	9.6E-01 
	-3.2E-01 
	-5.3E-02 
	-5.9E-01 
	1.2E-01 
	-6.3E-02 
	-3.5E-02 
	5.5E-02 
	5.9E-02 
	3.2E-01 
	4.8E-02 


	Table 4: Wavelengths [nm] and coeﬃcients for average number of hydrogen atoms. Intercept β= −2.91.
	∗ 

	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 
	w8 
	w9 
	w10 
	w11 

	λ∗ 
	λ∗ 
	3300.4 
	3308.3 
	3324.2 
	3332.2 
	3348.4 
	3381.1 
	3414.5 
	3431.5 
	3465.9 
	3474.6 
	3492.1 

	β∗ 
	β∗ 
	1.3E+00 
	-5.3E-01 
	-5.5E-01 
	-3.3E-01 
	7.3E-02 
	8.4E-02 
	1.1E-02 
	1.3E-01 
	3.7E-01 
	1.7E-02 
	1.1E-01 


	Table 5: Wavelengths [nm] and coeﬃcients for MW [g/mol]. Intercept β= −22.7.
	∗ 

	0 
	w1 w2 w3 w4 w5 w6 w7 w8w9w10w11 
	λ3300.4 3308.3 3324.2 3332.2 3348.4 3356.5 3364.7 3381.1 3431.5 3465.9 3492.1 β1.3E+01 -4.4E+00 -1.3E+00 -7.4E+00 1.5E+00 -7.6E-01 -4.2E-01 7.4E-01 8.5E-01 4.2E+00 6.9E-01 
	∗ 
	∗ 

	Table 6: Wavelengths [nm] and coeﬃcients for ratio H/C. Intercept β=2.14.
	∗ 

	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 
	w8 
	w9 
	w10 
	w11 
	w12 
	w13 
	w14 
	w15 
	w16 
	w17 
	w18 
	w19 
	w20 

	λ∗ 
	λ∗ 
	3300.4 
	3308.3 
	3316.2 
	3324.2 
	3332.2 
	3340.3 
	3348.4 
	3356.5 
	3364.7 
	3372.9 
	3381.1 
	3389.4 
	3397.7 
	3431.5 
	3440.0 
	3448.6 
	3465.9 
	3474.6 
	3483.3 
	3492.1 

	β∗ 
	β∗ 
	-1.1E-01 
	3.6E-02 
	5.4E-02 
	-7.1E-02 
	6.1E-02 
	2.5E-04 
	-6.6E-03 
	1.0E-02 
	1.1E-03 
	9.7E-03 
	-1.5E-02 
	9.4E-03 
	8.2E-05 
	-1.1E-02 
	9.7E-03 
	-1.6E-03 
	-3.2E-02 
	1.1E-02 
	2.5E-03 
	-2.6E-04 


	Table 7: Wavelengths [nm] and coeﬃcients for initial boiling point [C]. Intercept β= −20.0.
	◦
	∗ 

	0 
	w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11w12 
	λ3300.4 3308.3 3332.2 3348.4 3356.5 3381.1 3414.5 3431.5 3440.0 3465.9 3474.6 3492.1 β∗ 1.3E+01 -5.7E+00 -2.0E+00 1.0E+00 -1.7E+00 3.9E-01 2.8E-01 5.9E-01 5.0E-01 3.6E+00 6.8E-02 6.4E-01 
	∗ 

	Table 8: Wavelengths [nm] and coeﬃcients for density at 15C [g/cm]. Intercept β=0.314.
	Table 8: Wavelengths [nm] and coeﬃcients for density at 15C [g/cm]. Intercept β=0.314.
	◦
	3
	∗ 


	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 
	w8 
	w9 
	w10 
	w11 
	w12 
	w13 
	w14 
	w15 
	w16 
	w17 

	λ∗ 
	λ∗ 
	3300.4 
	3308.3 
	3324.2 
	3332.2 
	3340.3 
	3348.4 
	3356.5 
	3364.7 
	3381.1 
	3406.1 
	3414.5 
	3431.5 
	3448.6 
	3457.2 
	3465.9 
	3483.3 
	3492.1 

	β∗ 
	β∗ 
	1.4E+02 
	-1.0E+02 
	1.2E+02 
	-2.1E+02 
	3.1E+01 
	2.4E+01 
	-3.9E+01 
	-5.9E+00 
	8.7E+00 
	3.5E+00 
	6.0E-02 
	2.2E+00 
	4.5E+01 
	1.6E+01 
	5.9E+01 
	2.6E+01 
	-2.7E-03 


	Table 9: Wavelengths [nm] and coeﬃcients for Surface Tension at 22C [dynes/cm]. Intercept β= 19.7. 
	◦
	∗ 

	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 

	w 
	w 
	3300.4 
	3348.4 
	3356.5 
	3397.7 
	3465.9 
	3474.6 
	3492.1 

	c 
	c 
	1.3E-01 
	-1.6E-03 
	-3.0E-01 
	-4.6E-02 
	4.1E-01 
	1.2E-01 
	-2.9E-04 


	Table 10: Wavelengths [nm] and coeﬃcients for NHC [MJ/kg]. Intercept β= 48.5.
	∗ 

	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 

	λ∗ 
	λ∗ 
	3316.2 
	3332.2 
	3356.5 
	3364.7 
	3389.4 
	3431.5 
	3465.9 

	β∗ 
	β∗ 
	-2.9E+02 
	-6.2E+02 
	1.9E+02 
	2.0E+01 
	1.8E+02 
	-8.9E+02 
	-4.6E+02 


	Table 11: Wavelengths [nm] and coeﬃcients for C2H4 yield. Intercept β=5.05.
	∗ 

	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 
	w8 

	λ∗ 
	λ∗ 
	3300.4 
	3324.2 
	3356.5 
	3389.4 
	3440.0 
	3457.2 
	3465.9 
	3474.6 

	β∗ 
	β∗ 
	9.3E+01 
	-9.8E+02 
	2.6E+02 
	-2.0E+02 
	-1.5E+01 
	-1.7E+03 
	7.1E+01 
	5.8E+02 


	Table 12: Wavelengths [nm] and coeﬃcients for ﬂash point [C]. Intercept β= −51.9.
	◦
	∗ 

	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 

	λ∗ 
	λ∗ 
	3300.4 
	3316.2 
	3324.2 
	3356.5 
	3448.6 
	3465.9 
	3492.1 

	β∗ 
	β∗ 
	4.1E+00 
	-2.0E+00 
	1.1E+00 
	-2.0E+00 
	1.7E+00 
	3.4E+00 
	2.1E-01 


	Table 13: Wavelengths [nm] and coeﬃcients for LBO. Intercept β=0.0762.
	∗ 

	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 

	λ∗ 
	λ∗ 
	3324.2 
	3348.4 
	3356.5 
	3414.5 
	3423.0 
	3474.6 

	β∗ 
	β∗ 
	7.9E-04 
	5.8E-05 
	1.3E-05 
	-6.1E-05 
	-1.8E-06 
	1.8E-04 


	Table 14: Wavelengths [nm] and coeﬃcients for DCN. Intercept β= 26.7.
	Table 14: Wavelengths [nm] and coeﬃcients for DCN. Intercept β= 26.7.
	∗ 


	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 
	w8 
	w9 
	w10 
	w11 

	λ∗ 
	λ∗ 
	3300.4 
	3308.3 
	3348.4 
	3356.5 
	3364.7 
	3381.1 
	3397.7 
	3440.0 
	3448.6 
	3465.9 
	3492.1 

	β∗ 
	β∗ 
	-6.9E-02 
	-1.4E+00 
	-7.6E-01 
	9.2E-03 
	2.8E-01 
	-1.7E-01 
	1.7E-01 
	-6.9E-01 
	-2.0E-03 
	5.8E-01 
	5.6E-01 


	Table 15: Wavelengths [nm] and coeﬃcients for IDT at 1300K, 4atm [µs]. Intercept β= 748.
	∗ 

	0 
	w1 
	w1 
	w1 
	w2 
	w3 

	λ∗ 
	λ∗ 
	3340.3 
	3381.1 
	3406.1 

	β∗ 
	β∗ 
	9.8E+01 
	3.0E-01 
	-3.1E+00 


	Table 16: Wavelengths [nm] and coeﬃcients for kinematic viscosity at -20C [mm/s]. Intercept β= −5.21.
	◦
	2
	-
	∗ 

	0 
	w1 
	w1 
	w1 
	w2 
	w3 
	w4 
	w5 
	w6 
	w7 
	w8 

	λ∗ 
	λ∗ 
	3300.4 
	3308.3 
	3316.2 
	3356.5 
	3397.7 
	3431.5 
	3448.6 
	3474.6 

	β∗ 
	β∗ 
	3.0E-03 
	-1.7E-01 
	-1.6E-01 
	-2.5E-01 
	-3.7E-03 
	-1.5E-01 
	-1.6E-01 
	8.9E-01 


	Table 17: Wavelengths [nm] and coeﬃcients for Total Cycloparaﬃns [wt %]. Intercept β= 
	Table 17: Wavelengths [nm] and coeﬃcients for Total Cycloparaﬃns [wt %]. Intercept β= 
	∗ 


	0 
	−138. 
	w1 w2 w3 w4 w5 w6 w7 w8 w9w10w11 
	λ3300.4 3308.3 3332.2 3364.7 3372.9 3423.0 3440.0 3448.6 3465.9 3474.6 3483.3 β1.1E+03 4.6E+02 -2.9E+04 -7.6E+03 -7.2E+02 5.0E+03 -8.1E+03 3.9E+04 2.4E+03 1.7E+04 8.1E+03 
	∗ 
	∗ 

	Table 18: List of fuels and their GC×GC compositions. The labeling of fuels is consistent with [46]. 
	Table
	TR
	Total Aromatics 
	Total Cycloparaﬃns 
	Total iso Paraﬃns 
	Total n Paraﬃns 

	Category 
	Category 
	Fuel 
	POSF 
	C 
	H 

	TR
	[wt %] 
	[wt %] 
	[wt %] 
	[wt %] 


	A fuel A1 10264 
	10.8 21.8 13.4 20.1 39.7 26.8 A fuel A2 10325 
	11.4 22.1 18.7 31.9 29.5 20.0 A fuel A3 10289 
	11.9 22.6 20.6 47.4 18.1 13.9 A fuel A4 12784 
	11.5 22.1 18.6 43.2 23.2 15.1 A fuel A5 12831 
	12.1 23.2 18.2 41.4 25.2 15.2 A fuel A6 12843 
	11.7 22.4 18.6 42.4 23.8 15.3 A fuel A7 12905 
	11.5 22.4 21.2 25.5 29.6 23.8 A fuel A8 12906 
	11.4 22.1 17.4 38.4 25.1 19.0 Blend fuel 20%A2-80%C1 
	12.3 26.0 4.3 7.3 83.6 4.6 Blend fuel 50%A2-50%C1 
	11.9 24.4 10.1 17.3 61.6 10.9 Blend fuel 80%A2-20%C1 
	11.6 23.0 15.4 26.3 41.7 16.5 Blend single BF1 
	9.4 19.1 20.4 0.0 0.0 79.6 Blend single BF10 
	8.4 16.4 47.9 0.0 26.0 26.1 Blend single BF11 
	8.2 17.2 0.0 0.0 100.0 0.0 Blend single BF12 
	8.0 14.9 29.8 0.0 35.4 34.9 Blend single BF13 
	9.2 19.3 15.0 0.0 67.8 17.2 Blend single BF14 
	8.6 17.8 38.4 0.0 43.9 17.7 Blend single BF2 
	8.8 16.3 40.8 0.0 0.0 59.2 Blend single BF3 
	7.6 10.7 80.4 0.0 0.0 19.6 Blend single BF4 
	8.2 13.6 60.2 0.0 0.0 39.8 Blend single BF5 
	9.6 21.2 100.0 0.0 0.0 0.0 Blend single BF6 
	9.2 20.4 0.0 0.0 19.3 80.7 Blend single BF7 
	8.8 19.6 0.0 0.0 39.7 60.3 Blend single BF8 
	8.4 18.8 0.0 0.0 60.0 40.0 Blend single BF9 
	8.0 14.3 0.0 0.0 79.9 20.1 Blend single Won10 
	10.6 23.3 0.0 0.0 33.8 66.2 Blend single Won11 
	8.7 19.4 0.0 0.0 64.6 35.4 Blend single Won12 
	8.9 19.9 0.0 0.0 53.3 46.7 Blend single Won13 
	9.2 20.4 0.0 0.0 39.0 61.0 Blend single Won14 
	9.5 21.0 0.0 0.0 25.6 74.4 Blend single Won15 
	9.9 21.7 0.0 0.0 6.6 93.4 Blend single Won6 
	9.0 20.1 0.0 0.0 73.9 26.1 Blend single Won7 
	9.4 20.8 0.0 0.0 65.4 34.7 Blend single Won8 
	9.8 21.5 0.0 0.0 55.8 44.2 Blend single Won9 
	10.1 22.2 0.0 0.0 48.1 51.9 11498 C fuel C1 12368 
	12.6 27.2 0.0 0.1 99.6 0.0 12384 12344 
	C fuel C4 
	C fuel C4 
	11.4 24.8 0.4 0.4 98.5 0.2 

	12489 12345 12713 
	C fuel C5 
	C fuel C5 
	9.7 18.7 30.7 0.1 51.6 17.7 

	12789 12816 C fuel C7 12925 
	12.1 23.9 4.9 62.3 29.5 3.3 C fuel C8 12923 
	11.6 21.4 27.3 38.0 21.0 13.7 CN fuel CN30 13197 
	11.6 23.1 13.1 12.6 65.0 9.4 CN fuel CN35 13198 
	11.4 23.3 10.3 16.9 61.7 11.1 CN fuel CN40 13199 
	11.7 23.3 12.8 27.8 47.8 11.6 CN fuel CN45 13200 
	11.4 23.1 8.7 30.1 47.0 14.2 CN fuel CN50 13201 
	11.1 22.5 8.3 34.8 39.4 17.5 CN fuel CN55 13202 
	11.5 23.3 7.4 30.7 34.7 24.4 Pure aromatics Toluene 
	7.0 8.0 100.0 0.0 0.0 0.0 Pure cyclo-Cyclodecane 
	10.0 20.0 0.0 100.0 0.0 0.0 Pure cyclo-Cycloheptane 
	7.0 14.0 0.0 100.0 0.0 0.0 Pure cyclo-Cyclooctane 
	8.0 16.0 0.0 100.0 0.0 0.0 Pure n-iso-2,2-Dimethyl butane 
	6.0 14.0 0.0 0.0 100.0 0.0 Pure n-iso-2,3-Dimethylbutane 
	6.0 14.0 0.0 0.0 100.0 0.0 Pure n-iso-3-Methylhexane 
	8.0 18.0 0.0 0.0 100.0 0.0 Pure n-iso-3-Methylpentane 
	6.0 14.0 0.0 0.0 100.0 0.0 Pure n-iso-Isooctane 
	8.0 18.0 0.0 0.0 100.0 0.0 Pure n-iso-n-Decane 
	10.0 22.0 0.0 0.0 0.0 100.0 Pure n-iso-n-Dodecane 
	12.0 26.0 0.0 0.0 0.0 100.0 Pure n-iso-n-Heptane 
	7.0 16.0 0.0 0.0 0.0 100.0 Pure n-iso-n-Hexane 
	6.0 14.0 0.0 0.0 0.0 100.0 Pure n-iso-n-Nonane 
	9.0 20.0 0.0 0.0 0.0 100.0 Pure n-iso-n-Pentadecane 
	15.0 32.0 0.0 0.0 0.0 100.0 Pure n-iso-n-Tridecane 
	13.0 28.0 0.0 0.0 0.0 100.0 Pure n-iso-n-Undecane 
	11.0 24.0 0.0 0.0 0.0 100.0 Pure n-iso-n-Octane 
	8.0 18.0 0.0 0.0 0.0 100.0 
	37 
	Table 19: Physical and chemical properties of fuels in the training dataset. The labeling of fuels is consistent with [46]. 
	Category Fuel 
	MW ratio H/C IBP [43] Density [43] ST NHC C2H4 yield [46] FP LBO [38, 39] DCN [40, 41, 42] IDT [46] KV Total cyclo 
	A fuel A1 
	151.4 2.019 150 0.7799 23.8 43.1 1.58 42 0.08066 48.61 997.8 3.5 20.08 
	A fuel A2 
	158.9 1.939 159.2 0.803 24.8 43.06 1.69 48 0.08061 48 1044 4.5 31.86 
	A fuel A3 
	165.4 1.899 177.9 0.8268 25.7 43 1.599 60 0.08142 39.07 1059 6.5 47.39 
	A fuel A4 
	160.1 1.922 168 43.1 1.518 41.52 1210 4.9 43.16 
	A fuel A5 
	168.4 1.917 161 43.1 1.248 45.05 1151 6.3 41.4 
	A fuel A6 
	162.8 1.915 173 43.1 1.633 41.91 1088 5.5 42.38 
	A fuel A7 
	160.4 1.948 1.652 49.11 1169 25.48 
	A fuel A8 
	158.9 1.939 1.677 46.34 1055 38.44 
	Blend fuel 20%A2-80%C1 
	173.9 2.112 168.8 0.768 43.78 0.821 50 0.08462 23.86 4.7 7.325 
	Blend fuel 50%A2-50%C1 
	167.8 2.045 162.5 0.781 43.5 1.035 50 0.08311 33.28 4.5 17.31 
	Blend fuel 80%A2-20%C1 
	162.3 1.98 158.3 0.795 43.3 1.358 48 0.08178 41.78 4.5 26.32 
	Blend single BF1 
	131.8 2.039 62.14 0 
	Blend single BF10 
	117.3 1.955 43.27 0 
	Blend single BF11 
	115.5 2.098 32.99 0 
	Blend single BF12 
	110.5 1.865 31.66 0 
	Blend single BF13 
	129.9 2.091 57.14 0 
	Blend single BF14 
	120.8 2.075 45.52 0 
	Blend single BF2 
	121.6 1.856 54.14 0 
	Blend single BF3 
	101.8 1.416 28.58 0 
	Blend single BF4 
	111.9 1.656 44.18 0 
	Blend single BF5 
	136.6 2.208 61.21 0 
	Blend single BF6 
	130.9 2.217 55.08 0 
	Blend single BF7 
	125.2 2.227 46.93 0 
	Blend single BF8 
	119.6 2.238 36.59 0 
	Blend single BF9 
	110.8 1.772 36.93 0 
	Blend single Won10 
	151.1 2.188 65 0 
	Blend single Won11 
	123.9 2.23 45 0 
	Blend single Won12 
	127.1 2.224 50 0 
	Blend single Won13 
	131.1 2.217 55 0 
	Blend single Won14 
	134.8 2.211 59.1 0 
	Blend single Won15 
	140.2 2.203 65 0 
	Blend single Won6 
	128.6 2.221 45 0 
	Blend single Won7 
	133.5 2.213 50 0 
	Blend single Won8 
	138.8 2.205 55 0 
	Blend single Won9 
	143.1 2.198 59.1 0 
	C fuel C1 
	178.4 2.159 174.3 0.7597 23.4 43.82 0.468 49.5 0.08686 17.1 2513 5 0.05 
	C fuel C4 
	161.6 2.175 161.5 0.7592 22.7 43.81 0.971 44.5 0.08477 28 1711 3.87 0.43 
	C fuel C5 
	135.1 1.928 156.6 0.7689 23.8 43.01 1.764 43.5 0.08248 39.6 1264 1.96 0.07 
	C fuel C7 
	169.1 1.975 184 0.8181 26.1 1.528 64 42.6 939 6.53 62.31 
	C fuel C8 
	160.6 1.845 170 0.8238 26.5 1.254 56 43.5 922 4.84 37.97 
	CN fuel CN30 
	162.3 1.991 0.915 30 1822 12.55 
	CN fuel CN35 
	160.1 2.044 0.7946 34 1551 16.93 
	CN fuel CN40 
	163.7 1.991 1.193 40 1390 27.83 
	CN fuel CN45 
	159.9 2.026 1.328 44 1210 30.14 
	CN fuel CN50 
	155.7 2.027 1.937 51 937.8 34.81 
	CN fuel CN55 
	161.3 2.026 1.65 54 906 30.74 
	Pure aromatics Toluene 
	92 1.143 110.6 40.59 6 6 0 
	Pure cyclo-Cyclodecane 
	140 2 201 0.857 100 
	Pure cyclo-Cycloheptane 
	98 2 118.4 0.81 100 
	Pure cyclo-Cyclooctane 
	112 2 149 0.831 22.3 100 
	Pure n-iso-2,2-Dimethylbutane 
	86 2.333 50 0.649 24.4 0 
	Pure n-iso-2,3-Dimethylbutane 
	86 2.333 58 0 
	Pure n-iso-3-Methylhexane 
	114 2.25 92 0.687 42 0 
	Pure n-iso-3-Methylpentane 
	86 2.333 63 0.66 30.7 0 
	Pure n-iso-Isooctane 
	114 2.25 99 44.31 17.5 0 
	Pure n-iso-n-Decane 
	142 2.2 174 0.73 23.83 44.24 46 0 
	Pure n-iso-n-dodecane 
	170 2.167 216 0.75 25.35 44.15 80 0.07701 73 0 
	Pure n-iso-n-Heptane 
	100 2.286 98 0.683 20.14 44.57 -7 0.08021 53.5 0 
	Pure n-iso-n-Hexane 
	86 2.333 69 0.664 18.43 44.75 49 0 
	Pure n-iso-n-Nonane 
	128 2.222 151 0.719 22.85 44.31 31 60.9 0 
	Pure n-iso-n-Pentadecane 
	212 2.133 270 0.769 96 0 
	Pure n-iso-n-Tridecane 
	184 2.154 234 0.756 90 0 
	Pure n-iso-n-Undecane 
	156 2.182 196 0.74 24.66 44.19 61 83 0 
	Pure n-iso-Octane 
	114 2.25 126 0.702 21.61 44.43 12 58.2 0 
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